
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Conceptual Development o f Nondeterminism
in Theoretical Computer Science

Walter Warwick

Submitted to the faculty o f the University Graduate School
in partial fulfillment o f the requirements

for the degree
Doctor o f Philosophy

in the Department o f History and Philosophy of Science
Indiana University

March 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3005421

___ ®

UMI
UMI Microform 3005421

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment o f the
requirements for the degree o f Doctor of Philosophy.

Doctoral
Committee

February 9, 2001

Michael Friedman, Ph.D.

C

Brian Cantwell Smith

Michael Dickson

Noretta Koertge

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This work is dedicated to my Dad for showing me how much fun it can be to

think about hard problems, to my Mom for being kind and good-humored (but this ain’t

about binary numbers, Mom), and especially to my wife, Cathy, for putting up with me

while I crawled through this process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I would like to acknowledge Michael Dickson, Brian Smith, Michael Friedman

and Noretta Koertge for all their help from afar as I completed this essay. Out o f sight is

often out of mind, which makes me all the more grateful for their willingness to comment

on the work that would appear from me out of the blue. Also, I’d like to thank Becky

Wood for all her help with the last minute details, her willingness to put out all the little

fires that started with my neglect and her overall grace in dealing with my panicked,

long-distance calls. Finally, I would like to thank Ron Laughery, Sue Archer and Rick

Archer for being both flexible and enthusiastic as I tried to balance job and dissertation.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONTENTS

C hapter 1 Fram ing the Problem

§ 1 Who Wants to be a Millionaire?... I
§2 Four Intuitions about Nondeterminism... 4

2 .1 Nondeterminism as an example o f extensional
equivalence.. 4
2.2 Nondeterminism as a natural reflection o f the
mathematician’s behavior .. 6
2.3 Nondeterminism as a mathematically interesting construct. . 7
2.4 Nondeterminism as a physical process............................... 8

§3 Defining the Problem.. 10
§4 An Outline o f the Essay.. 13

C hapter 2 Some Historical and Technical Background

§0 O verview .. 19
§ I The Original Motivation for the Turing M achine 19
§2 The Turing Machine as an Unbounded Model of Computation . . 26
§3 The Turing Machine and Resource-Bounded Computation 31
§4 Formal Grammars... 36

C hapter 3 Philosophical Concerns about Nondeterministic Algorithms

§0 O verview ... 38
§L Introduction... 38
§2 Getting to the Center o f the Tangle... 41
§3 One Idea from Three Traditions... 60
§4 Where Do We Go From h e re ? ... 66

4. L Looking at alternation to understand nondeterminism 68
4.2 Redefining nondeterminism.. 69
4.3 Moving beyond the Turing machine... 72

C hapter 4 A Second Look at the Received History

§0 Overview ... 75
§L Introduction... 75
§2 Turing's Nondeterministic Turing M achines................................. 78
§3 Rabin and Scott's Nondeterministic A u tom ata 90
§4 1959-1964 and Kuroda's Nondeterministic Linear-bounded

Automaton.. 97
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

§5 1965-1972 ... 104
§6 Conclusions.. 116

Chapter 5 Computer Science and the Philosophy of Science

§ 1 Looking Back and Looking Forward.. . 118

Bibliography.. 130

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I. Framing the Problem

1. Who Wants to be a Millionaire?

There are at least two ways to become a millionaire. The first is to embarrass

yourself on any one o f a number of nationally televised game shows. The second is to

solve the P versus NP problem (see http://www.claymath.org/prize_problems/index.htm

for details). For those unwilling to pander to the stupid and greedy, the choice here is

obvious, but the problem is not.

On the Claymath homepage, the P versus NP problem is described in this way:

It is Saturday evening and you arrive at a big party. Feeling shy, you wonder
whether you already know anyone in the room. Your host proposes that you
must certainly know Rose, the lady in the comer next to the dessert tray. In
a fraction o f a second you are able to cast a glance and verify that your host
is correct. However, in the absence of such a suggestion, you are obliged to
make a tour o f the whole room, checking out each person one by one, to see
if there is anyone you recognize. This is an example of the general
phenomenon that generating a solution to a problem often takes far longer
than verifying that a given solution is correct. Similarly, if someone tells
you that the number 13,717,421 can be written as the product o f two smaller
numbers, you might not know whether to believe him, but if he tells you
that it can be factored as 3607 times 3803 then you can easily check that it is
true using a hand calculator. One of the outstanding problems in logic and
computer science is determining whether questions exist whose answer can
be quickly checked (for example by computer), but which require a much
longer time to solve from scratch (without knowing the answer). There
certainly seem to be many such questions. But so far no one has proved that
any o f them really does require a long time to solve; it may be that we
simply have not yet discovered how to solve them quickly. Stephen Cook
formulated the P versus NP problem in 1971.

In addition to the informal description, there is a link to a "technical" description o f the

problem given by Cook himself:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.claymath.org/prize_problems/index.htm

www.manaraa.com

The P versus NP problem is to determine whether every language accepted by
some nondeterministic algorithm in polynomial time is also accepted by some
(deterministic)algorithm in polynomial time.

At first blush, it is not clear that the two descriptions refer to the same problem.

The first description talks about quickly checking solutions while the second invokes a

recondite notion of nondeterminism (the "N" in "NP"). Obviously, the two descriptions

are intended to complement one another; the former primes the intuitions while the latter

refers to the formal framework that gives rise to the problem. Still, it is striking that the

two descriptions would be so disparate. In fact, there is such a disconnection between the

two descriptions that we might wonder how the formal and informal accounts o f the P

versus NP problem are related. The conspicuous lack o f explanation suggests that the

relation is obvious. Asking for further explanation here is like shopping for luxuries; if

you have to ask, you probably don't understand the problem. But we should not shy away

from asking. Indeed, the P versus NP problem is rooted in a tradition that began with a

painstaking effort to make the relation between the informal and the formal as clear as

possible. In this essay, we will examine the notion o f nondeterminism that underlies the P

versus NP problem and argue that, far from being obvious, the relation between the

formal and informal description o f the P versus NP problem betrays an unexpectedly

complicated history in the development o f theoretical computer science.

Before we launch into a detailed examination o f nondeterminism let us first

define the deterministic Turing machine and then make a few observations. Intuitively,

we can think o f a Turing machine as consisting o f two parts: a finite control and a tape

with an indefinite number o f cells. The control consists o f a finite collection o f internal

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

states and a read/write head that scans the tape one cell at a time. Each cell contains a

single symbol from a finite alphabet. Turing machines compute in a step-wise manner. At

each step, the control assumes exactly one o f its internal states and scans the contents o f a

single cell. Depending on the current state and the contents o f the cell, the control will

overwrite the contents o f the cell (perhaps "printing" a blank or even rewriting the old

symbol) and then move either one cell to the right or to the left before assuming a new

internal state and beginning the next step in the computation. More formally, Turing

machines are defined as ordered tuples o f some sort.1 For instance, Papadimitriou (1994)

defines a Turing machine, M, as a quadruple, M=<K, £ , 8, s> where K is a finite set of

states, £ is a finite set o f symbols, 8 is a transition function mapping states and symbols

to states and behaviors (where a behavior is an atomic action such as printing a new

symbol or moving left or right) and s is the designated "start" state in K. The behavior o f

a Turing machine, and hence the machine itself, is completely determined by its

transition function.

Now, let us make a few observations. First, we should note that the intuitive

picture o f a Turing machine is quite compelling, but as far as the theory o f computation is

concerned, "the ultimate characterization [of a Turing machine] is entirely mathematical"

(Rogers 1967, p. 13). Like the two descriptions o f the P versus NP problem, the Turing

machine provides us another curious example o f the interplay between informal

1 Presentations differ in terms o f the tuple used to define Turing machines; sometimes
machines are defined as quadruples (Papadimitriou 1994), other times as quintuples
(Bovetand Crescenzi 1994) or even septuples (Hopcroft and Ullman 1979). Such
differences arise from idiosyncratic notions o f what to count as an atomic action, but they
are theoretically inconsequential.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

intuitions and formal characterizations. Second, having defined the deterministic Turing

machine in terms o f a transition function, we define a nondeterministic Turing machine

in terms o f a transition relation, where the current state and symbol do not uniquely

define the next state and action. Thus the technical distinction that Cook refers to

between a deterministic and nondeterministic algorithm in his formal description o f the P

versus NP problem is clear and unambiguous. By contrast, the informal description of the

P versus NP problem turns on our "understanding of nondeterminism" (Papadimitriou

1994, p. 45, emphasis added). It is one thing to offer a formal definition, but quite

another to understand the notion thus defined. In fact, there are at least four different

ways o f thinking about nondeterminism.

2. Four Intuitions about Nondeterniinism
2.1 Nondeterniinism as an example of extensional equivalence

First, we can think about nondeterminism as further evidence that the formal

notions o f computable are sufficiently general. In particular, we can point to the fact that

nondeterministic Turing machines are no more powerful than deterministic Turing

machines with respect to the class o f functions they compute as another example in a

long list o f extensional equivalencies between seemingly disparate models of

computation. (We will outline a proof of the equivalence o f deterministic and

nondeterministic Turing machines in Chapter 3.)

There is an obvious precedent for such a view of nondeterminism. By the mid

1930s there were several well-known formalisms presented as analogues o f the informal

notion o f an algorithm: there were the general recursive function due to Herbrand and

Godel,; the ^.-definable functions due to Church; and, finally, the functions computable

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

by a Turing machine. Although each of these formalisms was put forward to answer the

same question (viz., what is it to be algorithmic?) they were strikingly different.

Moreover, it seemed that the arguments that any one of these formalisms could exhaust

the informal notion o f algorithm would ultimately be philosophical. Consequently, it was

rather surprising that almost as soon as the three formal notions were on the table,

rigorous equivalence proofs were given showing that the recursive, effectively calculable

and computable functions are coextensive.2 These equivalence proofs suggested that the

formal accounts adequately captured the informal notion o f an algorithm and thus the so-

called Church Turing thesis was bom.

Likewise, nondeterministic computation seems quite different than deterministic

computation. Indeed, we will see below that deterministic Turing machines compute in

the plodding, uninspired and exhaustive manner one might expect from a machine.

Nondeterministic machines, by contrast, "guess" as they compute and, moreover, they

always guess correctly. The fact that nondeterministic machines are no more powerful

than deterministic machines is as striking as any of the original equivalencies established

in the '30s, and it leads to a view o f nondeterminism as further evidence for the Church

Turing thesis. Once we begin thinking in such terms, it is hard not to think in the terms

that originally motivated the Church Turing thesis, namely, what is it to work

algorithmically, to follow a set o f instructions or to behave like a machine.

2 In a series of strange historical twists, it was Church (not Godel or Herbrand) who
argued for the adequacy o f the general recursive functions as a formal account o f
effectively computable; it was Kleene (and not Church) who demonstrated the
equivalence o f the ^.-definable and general recursive functions; and it was Godel who
publicly celebrated Turing's account.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 Nondeterminism as a natural reflection of the mathematician's behavior

Second, nondeterminism can be seen as a reflection of what humans actually do

when working with a formal system (e.g., a system o f natural deduction). Unlike the

intuitions associated with extensional equivalence, intuitions about nondeterminism as a

more natural model o f computation speak directly to the question o f whether a formal

model o f computation can do justice to the intuitive notion of an algorithm. Indeed,

Turing himself recognized that any argument suggesting that the formal notion of

computable exhausts the informal notion of algorithm would be essentially intuitive

(Turing 1965a, p. 135). Although it seems counter-intuitive, we will argue below that

nondeterminism actually deepens the intuitive appeal of Turing’s account. Moreover, we

will gain an appreciation for the profound impact such appeals to intuition had. In the

meantime, we will simply note that mathematicians since Godel3 have celebrated the

Turing machine as a model that finally made the mathematical notion of an algorithmic

procedure mathematically precise. There were, o f course, idea about recipes and rules

long before Turing, but his analysis was particularly compelling. Even if Church had the

claim on priority, the idea that the informal notion of algorithm might be characterized by

any formal notion (e.g., the general recursive a la Church, or the Turing computable)

really gained currency with Turing's work.

3 See, e.g., (Godel 1965b) or the 1964 Postscriptum to (Godel 1965a) where Godel
states, "In consequence o f later advances, in particular o f the fact that, due to A.M.
Turing's work, a precise and unquestionably adequate definition o f the general system
now be given, the existence o f undecidable arithmetical propositions and the non-
demonstrability o f the consistency of a system in the same system can now be proved
rigorously for every consistent formal system containing a certain amount o f finitary
number theory" (emphasis in the original). Details for such a proof can be found in
(BCleene 1988).

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although Turing is not credited for the introduction o f the nondeterministic

machine that bears his name, we will see in Chapter 4 that it was, in fact, Turing who

introduced nondeterminism and we will argue that he did so to make his account of

computation more familiar and hence more intuitively compelling.

We will also see a related intuition surface in the 1960s with the birth o f

complexity theory. Complexity theory began because the study of algorithms eventually

had to "deal realistically with the quantitative aspects o f computing" (Hartmanis and

Hopcroft 1971, p. 444). Oddly enough, this requirement initially drove researchers to a

model o f computation more restricted than the Turing machine and, by extension, more

restricted than the nondeterministic Turing machine. Nevertheless, the talk of

constraining the Turing machine in the 1960s is reminiscent o f Turing's original

discussion o f nondeterministic computation insofar as each was intended to tie the formal

to the actual and familiar.

2.3 Nondeterminism as a mathematically interesting construct

Third, nondeterminism can be viewed as a useful way of classifying problems.

The intuition here is rooted in a sense o f mathematical utility and has more to do with

how hard it is to compute than what it is to compute.4 More specifically, if we are given a

4 We should note that the Turing machine has always been studied as a purely
mathematical model. For instance, in Kleene's (1988) discussion o f Turning machines he
states that "so far as we [i.e., mathematicians] are interested in it," the behavior o f a
Turing machine can be completely described by either a table or a transition function.
Indeed, the arithmetization o f the Turing machine, whereby machines are encoded by
natural numbers, is the crucial step in developing interesting theory. The point we are
making here, however, is that even if Turing machines themselves have always been
studied as mathematical objects, there is an important difference between appealing to
the Turing machine as a model o f computation and viewing it as an interesting, but

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

robust model o f computation, like the Turing machine, and if we worry about how long

it takes to solve problems, then nondeterminism seems to impose structure on the class of

computable problems. In this light, nondeterminism is not meant to buttress a formal

account o f computable nor is it intended to be a reflection o f what mathematicians, much

less machines, actually do when they compute. Nondeterministic machines are a patently

"unrealistic model o f computation" and they "break our chain o f ‘reasonable’ models of

computation" (Papadimitriou 1994, p. 45, emphasis in the original). Moreover, the

operation o f a nondeterministic machine is either described metaphorically or simply left

to the "imagination" o f the reader.5 The point is not how such nondeterministic machines

work, but rather that nondeterminism can be used as a something of a proxy for a class of

problems-often described as those with "succinct certificates" or as "easily verified." In

Chapter 3 we will see that mathematical intuitions about nondeterminism lead to an

unexpected result about the manner in which nondeterministic algorithms compose. In

Chapter 4 we will note with even greater surprise that the existence o f those problems

now characterized by nondeterminism has led some to suggest that it is time to

reformulate the Church Turing thesis.

2.4 Nondeterniinism as a physical process

Finally, nondeterminism can be understood in a physical sense as a random or

irreversible process. For example, we will see in Chapter 3 that Rogers argues that a

deterministic algorithm should not depend on the roll o f a dice. Likewise, although

perhaps, inessential label for a class o f problems.
5 See, e.g., (J. D. Smith 1989, especially pp. 296-301) who talks about nondeterministic

machines "guessing" what to do next, or (Bovet and Crescenzi 1994, p. 19) who struggle

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Minsky acknowledges the question whether "noise or other physical realities o f a

probabilistic nature can be tolerated by the theory," he never addresses the question

(1967, p. 299). Historically, intuitions about nondeterminism as a physical process

helped define what computation was not. Even if the physical implementation of a

computer was subject to vicissitudes like overheating vacuum tubes and faulty wiring,

the theory o f the '50s and '60s was characterized by an assumption that each step in an

algorithm would be completely and uniquely specified by the step that preceded it. The

process o f computation was thus deterministic in the sense that it was completely

reproducible and entirely predictable (at least theoretically). By excluding the physical

sense of nondeterminism, researchers made room for an interesting theory that would

otherwise be lost in the practical details of electrical engineering. In this respect, the

development of theoretical computer science is like the development o f any other

scientific theory insofar as it depends on a certain degree o f simplification and

abstraction from the real world. But we will also see in Chapter 3 that some are now

advocating the possibility o f exploiting physically nondeterministic systems for efficient

solutions to problems that are thought to be theoretically intractable. In an ironic twist,

the sense o f nondeterminism that was once excluded from the theory might someday

crack complexity theory's most difficult problems. It is an interesting question whether

such a development would advance theory or obviate it.

3. Defining the Problem

There are four very different intuitions all lumped together under the rubric of

to imagine what it would look like for a nondeterministic machine to compute a function.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism. The multiplicity o f these intuitions does little to help us understand the

relation between the formal and informal accounts o f the P versus NP problem. In fact,

when we look closely at these intuitions we see our understanding o f nondeterminism

beginning to splinter. For instance, how can we reconcile an intuition about extensional

equivalence—an intuition that is intended to buttress the Church Turing thesis and plays

on our common intuitions about algorithms— with intuitions about mathematical utility

that have ultimately led some to suggest that the Church Turing thesis should be

reformulated. Likewise, what should we say when our intuitions are motivated by the

need to make the theoretical more familiar, while at the same time an assumption of

nondeterminism leads to a model o f computation that is patently unrealistic. Finally, can

we tolerate the possibility that intuitions about nondeterminism as a physical process

might lead to a situation where theoretical intuitions are moot?

In this essay, we address such questions as we try to disentangle the various

intuitions associated with nondeterminism in the conceptual development o f theoretical

computer science. To do this we must address two issues. First, insofar as there is a

received history to examine, we will find a presumption o f continuity but surprisingly

little in the history itself to substantiate that presumption. That is to say, references on

nondeterminism consistently point to the same names and papers, but when we trace this

bibliographic trail backwards we find a host o f ellipses and inconsistencies. The classic

papers on the subject do not always say exactly what we'd expect them to say given their

place in the received history, and, moreover, there are papers that bear directly on our

understanding o f nondeterminism that have largely gone unnoticed. Obviously, theory

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

marches on, but making philosophical sense o f it is hard to do in the face o f its

fragmented history. Second, the presumption o f historical continuity leads quite naturally

to a presumption o f conceptual continuity. In particular, it might be said that the four

intuitions about nondeterminism we identified above are really not so different, but rather

that they are complementary and represent an ever sharper and more complete

understanding of a single phenomenon. We will challenge that claim throughout this

essay.

In the meantime, however, we can at least make a prima facie case to rebut the

presumption o f conceptual continuity. Even if we ignore the historical ellipses and

incongruities, there is an obvious and true story to tell about the development of

theoretical computer science. It begins in the 1930s with the study o f what could be

achieved algorithmically or effectively. Research in the theory o f recursive functions and

effective computability was vigorously pursued for some thirty years. Then, for a variety

o f reasons, the theoretical emphasis shifted away from the study o f what could be

computed in an absolute sense to a more finely grained study of computational

complexity; the interesting question was no longer what could be computed, but rather

how hard it would be to compute. Answers to these kinds o f questions depended on a

measure of computation difficulty that was traditionally and quite naturally given in

terms o f number o f steps taken or the amount o f tape used by a Turing machine. For this

reason, complexity theory is often presented as a natural extension o f recursion theory

and, hence, a continuation o f the study of what can be achieved algorithmically. It turns

out, however, that complexity theory is now driven by three variations to the traditional

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Turing machine model: there are nondeterministic Turing machines, oracle machines

and alternating machines.

As we indicated above (and will argue throughout this essay), it is not clear that

the variety o f intuitions associated with nondeterminism can be reconciled. A similar

comment can be made about both oracle computation and alternating machines. For

instance, oracle computation is performed by an otherwise normal Turing machine with a

special additional state called the query state. At any point during its computation an

oracle machine can enter the query state, compute certain characteristic functions in an

instant, and then go on with its regular computation using the oracle information as

needed. The idea is due to Turing (1965b) and was originally intended to illuminate

implications about Godelian incompleteness. In complexity theory, however, oracle

machines underwrite curious methodological theorems about solving the P versus NP

problem.6 Today's use o f oracle machines in complexity theory is nothing like the use to

which they were originally put by Turing. Moreover, it is hard enough to reconcile our

intuitions about the P versus NP problem, much less meta-theoretic results about the

problem, with the more pedestrian intuitions about algorithms that presumably underlie

complexity theory. Obviously, there is a story to tell about how we got from the

computability theory o f the '30s to the complexity theory o f today.

In a similar vein, the notion o f an alternating machine is not so much about

6 These results are quite striking, for they assert that neither simulation nor
diagonalization can be used to settle the most general statement of the P versus NP
problem. These two proof techniques are the bread and butter o f recursion and
complexity theory, and without them it is hard to imagine how the P versus NP problem

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

machines at all, but, rather, about the so-called computation trees we associate with

Turing machines. We will discuss computation trees in more detail in Chapter 3, but for

now it is enough to note that alternation is proposed as a generalization of

nondeterminism whereby a Turing machine alternates between "existential" and

"universal" behaviors in its computation. Intuitively, one might think o f alternation in the

same way that one thinks of a winning strategy in a game like chess: do I have a move,

such that for every possible counter move, I have another move etc. What is striking

about alternating machines is that they lead to descriptions o f complexity classes (classes

o f problems) that make no reference to machines. The notion o f alternation is clearly a

long way from intuitions about machines.

The foregoing remarks are not intended to suggest that there is no coherent story

to tell about the conceptual development of theoretical computer science, but rather that

there is a story worth telling. We now outline the story we will tell.

4. An Outline of the Essay

The work we will do here is philosophical, and as such, we should not expect it to

have an immediate impact on the existing or ongoing work in complexity theory.

Likewise, the analysis o f the following chapters is not intended to be an indictment of

theoretical computer science, a theory that has produced real theorems and has led to

very tangible results.

But even if we concede that complexity theory has a life o f its own, the work we

do here will have an impact on how we understand the broader issues addressed by

will be settled.
13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

theoretical computer science. For instance, our focus on the relation between the formal

and informal accounts of nondeterminism will be familiar to those who have worried

about other dualities in computer science; questions about syntax and semantics, use and

mention, and the differences between the concrete and the abstract each play on the fuzzy

relation between our intuitions and the formal mechanisms we use to model them. More

generally, we will begin to see how big-picture questions about the development of

nondeterminism resonate with long-standing issues from the philosophy o f mathematics,

and how they ultimately shed light of the nature of computer science qua science.

Our immediate goals, however, are more modest. We will not presume to set the

agenda for a comprehensive philosophy of computation, but we will take a good, albeit

small, step in that direction by untangling the intuitions associated with nondeterminism.'

Our work is part detective story and part philosophy; the first explicit, theoretical

reference to the nondeterministic Turing machine is our smoking gun and the work we do

to find it will reveal otherwise unnoticed tensions.

Before we can get to our main questions concerning the nondeterministic Turing

machine, we will need to understand the deterministic model. Hence, in Chapter 2 we

will devote ourselves to the review of some canonical results, beginning with Turing's

solution to the Entscheidungsproblem and concluding with some of the arguments that

initially convinced complexity theorists that the deterministic Turing machine was

sufficiently robust model to support new theory. Although the proofs are all familiar, our

efforts here are not perfunctory. Rather, by revisiting familiar results we remind

ourselves o f the theorist's original motivation to view Turing machines as algorithms and

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

we will bring the problems of Chapter 3 into sharper relief.

Next we turn to one of the main objectives o f this essay, that o f challenging the

presumption o f conceptual continuity in the development of nondeterminism. In Chapter

3 we will see just how far removed intuitions about the mathematical utility of

nondeterminism are from intuitions about nondeterminism as a evidence for the Church

Turing thesis. We will begin with a standard presentation of the nondeterministic Turing

machine along with the usual proof of the equivalence between (unbounded)

deterministic and nondeterministic machines. The equivalence proof is important because

it suggests that, despite first impressions, nondeterministic machines do indeed have a

place in a theory o f effective procedures. But when we turn our attention to resource-

bound computation we will see that we can no longer take this equivalence for granted.

In fact, I will present an open problem from complexity theory where the received

understanding of nondeterminism has strikingly counter-intuitive consequences.7 At first

blush, the problem seems trivial—understanding why it is not reveals the tensions

between the mathematical intuitions about nondeterminism and our common intuitions

about algorithms. At the same time, however, we should not dismiss our non-solution as

naive. Quite to the contrary, the non-solution follows from deeply held intuitions about

composing algorithms. Should we embrace the nondeterministic Turing machine as yet

another equivalent model o f computation or should we emphasize a counter intuitive

distinction between deterministic and nondeterministic algorithms in order to support a

7 In particular, we will look at the NP versus coNP question which asks whether the
class o f problems solved by a nondeterministic Turing machine (i.e.. those problems
whose solutions are easily verified) is coextensive with its complement class (i.e., those

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

non-trivial theory of complexity? Philosophically speaking, we cannot have it both ways.

Moreover, we will see that insofar as there is a received history o f computation theory, it

does not help us here, for it fails to pin down the explicit introduction of the

nondeterministic Turing machine, thus leaving us without a broader context to sort out

these conflicting intuitions. Making sense o f nondeterministic algorithms turns out to be

very difficult.

It will be clear by the end o f Chapter 3 that we face a dilemma: We can either

ignore resource bounds when we articulate our notion o f computable or we can pursue a

rich theory o f complexity, which happens to be premised on a model o f computation that

has nothing to do with our pre-theoretic intuitions. In Chapter 4 we will push this

dilemma deeper still. We will argue that the predicament we face is not just a

philosopher’s problem, but rather the result o f conflicting theoretical motivations that

have yet to be acknowledged. We will argue that received history does not adequately

account for the origin o f the nondeterministic Turing machine. When we look more

carefully, we will find that nondeterminism was first discussed by Turing in his seminal

1936 work. The discovery is surprising given that the subsequent development in

recursion theory focused so completely on deterministic computation; so much so that

one might conclude that the idea o f nondeterministic computation had never even been

considered. What is more surprising is that Turing appealed to nondeterminism to argue

for the robustness o f his notion of computable. We will see that the intuitions were

altogether different when nondeterminism was re-introduced as a conservative expedient

problems whose solutions are not easily verified).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in automata theory some twenty years later. The intuitions change once again when

nondeterminism turns out to be a non-conservative assumption in formal language theory

before finally becoming the source of so much headache in complexity theory in the late

1960s and early 1970s. It is no wonder that the nondeterministic Turing machine is the

source o f so much philosophical confusion given that it has been put to so many disparate

uses.

In the end, we will not find a philosophical solution to this dilemma. We will

argue that the nondeterministic Turing machine, qua algorithm, makes no sense. But at

the same time, we cannot simply dismiss the nondeterministic Turing machine out of

hand given how much theory rides on the idea. Not only are there the famously (some

might say notoriously) open questions from complexity theory, there are also inter-

theoretic reductions among logic, model theory and complexity theory. So, for better or

for worse, we are stuck with conflicting intuitions about nondeterminism and a

philosophically inscrutable model o f computation. Still, in Chapter 5 we will see that the

work we have done raking the muck will illuminate some interesting philosophical

questions. For instance, by the time we are done it should be clear that one o f the main

tasks for a more thorough-going philosophy o f computation will be explaining the shift

from a theory motivated by intuitions about machines and what it means to compute, to a

theory that is now focused on questions about patently unrealistic models o f computation.

While some might see a natural evolution that requires no explanation, I hope that

Chapters 3 and 4 will have shaken any initial confidence in a presumption o f conceptual

or historical continuity. A comprehensive philosophy o f computation must also include

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the intellectual history o f the Church Turing thesis. Although Davis (1965; 1982; 1988a;

1988b) and Webb (1980) have started that investigation, our discussion of Turing's

nondeterministic machines complements their efforts. Finally, in Chapter 5 we will find

ourselves in position to evaluate the claim that computer science is a new science. We

will see interesting implications not only for the philosopher o f science, but also for the

philosopher o f mathematics.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

II. Some Historical and Technical Background

0. Overview

Before we go into any more detail about the philosophical problems surrounding

the nondeterministic Turing machine, we will discuss in this chapter the original

motivations for the Turing machine. We will also review some o f the standard results that

first convinced mathematicians that the Turing machine was an appropriate model of

computation and some of those results that later convinced complexity theorists that the

Turing machine was an appropriate model of resource-bounded computation. We will

also present the definition of a formal grammar (a notion we will discuss in Chapters 3

and 4).

1. The Original Motivations for the Turing machine

It is well known that Hilbert once considered the problem o f deciding the validity

o f an arbitrary formula of the first order predicate calculus to be one of "fundamental

importance" to mathematical logic (Hilbert and Ackermann 1950, p. 112). The so-called

Entscheidungsproblem came to occupy center stage not only as a question about logic

per se but also because Hilbert had seen how substantive mathematical questions could

be reduced to questions about the validity of particular first-order sentences. Moreover,

the problem demanded an algorithmic solution. There was nothing to gain in reducing a

mathematical question to a decision problem that required inspiration to solve; but there

was real potential in the possibility that validity might be decidable by the crudest of

methods—methods that could be followed like recipes and applied mechanically, without

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

insight. O f course, at the time the decision problem was posed, the formal sense of

algorithm had yet to be worked out mathematically. As Davis (1988b) points out, without

a formal notion o f algorithm, a negative solution to the Entscheidungsproblem would be

doubly hard; while a positive solution might exploit existing intuitions about algorithms,

it was not enough to establish that the decision problem was unsolvable by this or that

mechanical procedure, but rather that the problem was unsolvable by any possible

mechanical procedure. Anything short o f this would leave open the possibility that a

richer sense o f algorithm might yield a solution to the Entscheidungsproblem.'

In 1936, Turing proved the decision problem to be algorithmically unsolvable.2

The proof itself is a short, straightforward reductio: Turing observes that a positive

solution to the Entscheidungsproblem would entail a positive solution to a problem that,

on pain of contradiction, has no solution; hence the Entscheidungsproblem must be

unsolvable. Of course, before Turing can reach this conclusion, he must argue for the

existence o f an unsolvable problem and to do this Turing must pin down the sense of

algorithm. Thus, the Turing machine enters the picture.

Turing asks us to compare the actions of working mathematician to those of a

1 Hilbert used just such an argument in 1938 to respond to Church's notion of
computable and his proof o f the insolubility o f the Entscheidungsproblem, "Church's
work proves, however, the non-existence o f such a recursive procedure: at least, the
necessary recursion would not fall under the general type o f recursion set up by Church,
who has given ... a certain precise formalization" (Hilbert and Ackermann 1950, p. 124,
emphasis added).

2 Church actually solved the problem before Turing did, but it is has been well
documented that the two worked independently (see Davis 1988b, pp. 159-161).
Moreover, as we will see in the coming chapters, Turing's work was more influential than
Church's. And so we focus on the Turing machine.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

machine. The idea is that just as human computation is a step-by-step process carried out

symbolically on paper and pencil, so too we might imagine a machine that can scan and

print symbols while working in a regimented, stepwise manner. Moreover, just as the

human computer is limited— he can only keep track o f so many symbols at a time and he

can remember only so much— we imagine that the Turing machine is likewise limited in

its capacity. Thus the machine works with a finite number o f symbols and it depends on a

finite number o f internal "states" in order to "remember" what it is doing. With these

assumptions in place, Turing presents his model o f computation. We have a "machine"

(the computer) with a segmented "tape" (the paper) running through it. Each segment of

the tape can contain a single symbol and the machine is "directly aware" o f only one

symbol at a time. Turing defines the configuration o f a machine at a given time as given

by the internal state o f the machine together with the symbol it is scanning. Turing also

contends that in order to compute, a machine need only be capable of a handful of very

rudimentary behaviors. In response to a given configuration a machine might erase the

scanned symbol, it might write a new symbol into the square, it might shift the tape one

segment to the left or to the right, or it might change its internal state.

The model is austere, but more important, it is finite.3 That is, there is a finite

number o f internal states, a finite number of symbols and a finite (and small) number o f

3 It is interesting to note that Turing imagined his machines working out computable
sequences by printing out an infinite number o f terms in the sequence. Turing's machines
never stopped working. These days we prefer to think o f working machines as those that
always halt. The difference is not as great as it seems, however, for even if Turing's
computations are o f an indefinite length, his computing machines are still described by
"finite means."

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

possible behaviors. Thus it is possible to describe the actions o f a given machine, and

hence the machine itself, in any number o f ways. Turing chooses to describe his

machines in terms of tables with columns to represent configurations and behavior? while

each row represents a particular pair of state and symbol together with the machine's

response to the current configuration (i.e., erase, print, move or change state).

Consider Turing's simple example:4

configuration hehavinr

q t, blank "I", q2, right

q2, blank "0", qh right

This table describes a machine with just two states that, when started in state qi reading a

blank square, will print a "I," change its internal state to q2 and move one square to the

right. In state q2 reading a blank the machine prints a "0" returns to state q, and moves

one square to the right at which point it is again scanning a blank square in state q t. This

machine prints the string 'TO 101010 ..." ad infinitum.

O f course, more complicated machines will have more complicated tables, but what is

most important is that the tables themselves, no matter how complicated, can be

transposed into a standard format. In fact, rather than using a table with rows and

columns, we can concatenate the information in each row and present the table as a string

o f characters. In our example we can write something like:

qiSoSiq2R:q2S0S0qiR:

4 Our presentation is somewhat anachronistic in that the machine we have described
prints its output on consecutive squares. Turing originally imagined his machines

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

where S0, S,, R stand for "blank," "1" and "Right," respectively. Finally, if we denote "q,"

by the numeral "10" and "q2" by the numeral "100" (in general q, will be denoted by a "I"

followed by i "0"s), "S0" by "20", " S f by "200", "R" by "3" and by 4 we can present

our machine as a numeral, namely:

I020200I003410020201034

Turing calls such numerals "description numbers." The idea is that every machine will

have at least one description number, while each description number will pick out a

unique machine. The standardization and arithmetization of machine tables leads to

several remarkable facts: the computable sequences turn out to be enumerable; machine

descriptions can be presented as input to other machines; and there exists a "universal"

machine that can simulate the behavior o f any possible Turing machine.5

Now Turing can argue for the existence o f an unsolvable problem. Fie begins by

introducing the notions o f circular and circle-free machine: A machine is circular if it

printing on alternate squares and using the intervening squares for "scratch work."
5 The first two facts are immediate consequences of Turing's arithmetization (the

cardinality results implicit in the first fact also foreshadows the diagonalization Turing
will use to establish the existence of undecidable problems). The third fact, however, is
quite surprising. Indeed, it is far from obvious that one machine could do the work o f any
other machine. But as Davis (1988b, p. 159) points out, the universal machine is another
immediate consequence of Turing's analysis. Machine tables are really just lists of
instructions and according to those instructions each machine will execute a different
algorithm. The universal machine, on the other hand, executes a very simple algorithm,
namely, follow those instructions encoded by this description number. Except for the
decoding (a trivial step), Turing describes such a machine in detail. According to Davis,
the "apparent implausibility" o f such a universal machine together with the fact that
Turing was actually able to describe it provides a "significant vindication" o f Turing's
analysis o f computation. Davis also suggests that Turing's universal machine anticipates
both the stored program computer and the notion o f an interpretive program, and that it
anticipates the blurred boundaries between hardware and software and program and data.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

never prints more than a finite number o f symbols (the idea is that a machine that prints

only a finite number o f symbols must eventually repeat some configuration o f state,

symbol and scanned-square). Otherwise, the machine is circle-free. Next, Turing uses a

diagonal argument to show that there cannot be an algorithmic process for determining

whether a given machine is circle-free, for if there were such a process we could compute

the sequence P'=q>w(«) (where cpn(ri) is the digit in the nIh sequence computed by a

circle-free machine) which leads to a subtle contradiction: Suppose there were a machine

D to decide circularity. To compute P' for some number n, we construct a composite

machine H that feeds successive description numbers to D (starting with 0) until n circle-

free machines have been identified. At this point the /7th machine is simulated (via the

universal machine, another component o f H) until it prints its «th figure—which it is

guaranteed to do since it is a circle-free machine— and H outputs that figure as cpn(fr). H

is circle-free by construction (since each component machine is circle-free) and it has

some description number k. So H must compute cpk(k). It is obvious that H can simulate

the other k-\ machines as it prints the first k- 1 digits of P', but how does //sim ulate itself

when it is time to print the k h digit? As Turing notes, there is no explicit instruction for H

to compute the klh digit, "but the instructions for calculating the [£*h digit] would amount

to 'calculate the first [k] figures computed by H and write down the [^h]’ "(Turing 1965a,

p. 133). There is, so to speak, a regress in simulation. <p&(&) is "never found," and contrary

to the assumptions underwriting our construction, H is circular. Thus Turing concludes

that there can be no algorithmic process for deciding circularity.

With this undecidable problem in hand, Turing presents another problem and

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

argues that a solution to it would entail a solution to the problem o f deciding circularity.

Although Turing correctly identifies the problem o f deciding whether an arbitrary

machine will print a given symbol as undecidable, his proof is confusing.6 Nevertheless,

the undecidability o f this printing problem allows Turing to prove, finally, that the

Entscheidungsproblem is unsolvable. As we indicated above, Turing argues that a

positive solution to the Entscheidungsproblem would entail a positive solution to the

printing problem. The details o f the proof are tedious, but again straightforward (we will

see essentially the same construction again in Chapter 4). The underlying idea is that the

operation of a Turing machine on a given input can be described logically. In particular,

it is possible to construct (effectively) first-order formulae that codify the machine's

behavior and the contents o f its tape. Turing begins by introducing a variety o f predicates

to represent, for example, the individual cell being scanned at a particular point in the

computation, the contents o f that cell, the configuration of the machine at a particular

point in the computation, and a handful o f conditional statements to represent the

6 Following (Post 1965) Davis notes, "the argument is a bit complicated" (Davis
1988b, p. 136). Although Turing seems to be using a reduction, Davis points out that the
problem o f deciding circularity is o f a higher degree o f unsolvability than Turing's
problem o f deciding whether an arbitrary machine will print a given symbol and hence
circularity cannot reducing to printing. A simple diagonalization yields an easier (and
correct) proof o f the latter problem's undecidability: Following Davis (1988b), suppose
there were an algorithm to determine whether a given machine prints, say, a "|". Then we
can construct another machine, M, which will take description numbers as input and print
a "|" iff the described machine does not print a Now what happens when M takes its
own description number as input? M prints a "|" if and only it does not print a "|”—a
contradiction. Hence, there can be no algorithmic procedure to decide whether an
arbitrary machine will print a given symbol.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

machine's instructions.7 Turing uses these formulae to construct another existentially

quantified formula which asserts that "in some complete configuration of M, (i.e., 0)

appears on the tape" (Turing 1965a, p. 146). It then follows by an inductive argument that

the formula is provable if and only if the machine M does, in fact, print a zero. So, if we

could decide derivability in a formal system (i.e., if we could decide the validity of a

conditional statement relating the axioms of a formal system with the theorem in

question) then we could decide the printing problem, which we cannot do, so we cannot

solve the Entscheidungsproblem.

2. The Turing Machine as an Unbounded Model of Computation

The immediate effects of Turing's work were clear: Hilbert could not hope to

answer every mathematical question and these undecidability results together with the

Godel incompleteness theorems severely undermined the formalist program in

mathematics. But more important, Turing's work was one o f the first attempts to give

precise mathematical content to notions like computable, algorithmic and effective which

before had been only vague, intuitive notions. Consequently, attention was focused on a

host o f arguments for the adequacy o f the Turing machine as a formaL model o f

computation. As we will see in Chapter 4, these arguments were as much philosophical

7 For each instruction Turing introduces a conditional statement universally quantified
over complete configurations (i.e. tape contents + machine configuration) and tape
positions. Intuitively, the antecedent represents the state o f affairs before the instruction
is executed (e.g., scanning symbol s in cell x, in state q) while the consequent reflects the
updated tape/machine configuration after the instruction is carried out (e.g., scanning
symbol s' in cell x-1 in state q'). We should also note that Turing's original formulation o f
these conditionals was a bit loose— so we will pass over the particulars o f Turing's
presentation.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as mathematical. In the meantime, however, we will look at some o f the mathematical

arguments.

As we have noted, Church was the first to solve the Entscheidungsproblem.

Turing learned of Church's work as he was completing his own and he felt compelled to

add an appendix outlining the equivalence between Turing-machine computability and

the notion o f effective calculability implicit in Church's system of ̂ .-definable functions.

Quite apart from the intuitive appeal of Turing machine, we will see in Chapter 4 that it

was crucial that Turing's work did not fall short of extant accounts o f computation. The

fact that Turing-machine computability was provably equivalent to Church's sense of

"effective calculability" was, perhaps, the most compelling mathematical support for the

Turing machine. Indeed, similar results led Church to comment in 1935: "[The fact] that

two such widely different and (in the opinion o f the author) equally natural definitions of

effective calculability [i.e., the X-definable and general recursive functions] turn out to be

equivalent adds to the strength of the reasons adduced below for believing that they

constitute as general a characterization o f this notion as is consistent with the usual

intuitive understanding o f it" (Church 1965, p. 90). Adding another equivalence result not

only bolsters our faith that we have identified a general characterization o f computable,

but also has the reciprocal effect o f legitimizing the Turing machine as a model o f

computation.

There were also more direct mathematical justifications for the model itself. For

instance, there is no loss in generality in restricting Turing machines to a linear tape even

though human computers use two-dimensional work spaces. Kleene outlines the proof:

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We imagine a two-dimensional work space "sufficiently regular in structure so that the

[human] computer will not become lost in it during computation" (1952, pp. 380-381).

So, we might think of a grid-paper where from each cell in the grid there will be only

finitely many directions (e.g., up, down, right, left, diagonally etc.) in which we can

move to different cells in the grid. Since the number o f different motions is finite, the

number o f cells reachable from a given cell is countable. Next, Kleene argues that for

"any readily imagined symbol space" it is possible to enumerate all the cells in such a

way that for each direction o f movement there is a computable function that enumerates

the cells reachable from a given cell in that direction. This function is then used to index

two-dimensional grid-positions into a linear tape.s In a similar vein, well known

conversions between numeral systems demonstrate that the restriction to monadic (in the

unbounded case), or dyadic notations does not compromise the ability o f the Turing

machine with respect to a human computer who might use a richer set of symbols.

Finally, there were competing versions of the Turing machine (cf. Post 1965) where the

notion o f an atomic act differed slightly from Turing's; thus it is reasonable to assume

that the machine behaves discretely, in a step-by-step manner, even if the "atomic" acts

are actually composite.

In addition to the foregoing mathematical considerations, there were also

surprising methodological affinities between the approach taken at Princeton and the one

developed independently by Turing that would have augured well for the Turing machine

8 The same idea is implicit in the programmer's view of a two-dimensional (or n-
dimensional) array as a one-dimensional array o f arrays (or o f an array o f arrays o f arrays

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as an adequate model o f computation. For instance, Kleene reports that immediately after

Church proposed the identification o f the effectively calculable with the ^.-definable

functions, he "sat down to disprove it [i.e., the identification] by diagonalizing out o f the

class o f ̂ -definable functions. But quickly realizing that the diagonalization cannot be

done effectively, [he] became an overnight supporter" (Kleene 1981, p. 59). Although

Turing was probably not aware o f Kleene's overnight conversion, Turing was likewise

concerned that an obvious diagonalization out o f the computable sequences might

undercut his work. But Turing concluded, like Kleene, that such a diagonalization could

not be performed effectively. Not only does the "correct" application o f the diagonal

process lead to Turing's proof for the existence of an undecidable problem, but also his

concerns must have resonated with those already working out the mathematical sense of

effective calculability at Princeton. Turing's work would have seemed familiar even if the

approach he actually took was quite different from the one taken on the other side of the

Atlantic.9 Moreover, when he made it to this side o f the Atlantic, the work Turing did at

Princeton extended existing work quite naturally. For example, before Turing arrived in

the summer o f 1936, Church and Kleene had already given equivalence proofs

identifying the class o f 1-definable functions with the class o f general recursive functions

of arrays...).
91 do not mean to overstate the case here, but I imagine there was a substantial

difference in mathematical temperament between Turing (before he went to Princeton in
the summer o f '36) and those working with Church. Turing was notoriously sloppy in his
work, while people who knew Church have described him to me as exceedingly precise.
Nevertheless, it is easy to imagine that Turing's work was favorably received by Church
and others because they could recognize that Turing was doing things the right way even
if his proofs were riddled with mistakes.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

proposed by Herbrand and Godel. Kleene (1981) recalls how this work on ^.-definability

had led him to his famous 1936 normal form theorem for general recursive functions: He

thought of the computation of general recursive functions in terms o f "stages" where each

stage could be represented by a Godel number, with the whole process admitting a

primitive-recursive characterization. By applying a least-number operator it is possible to

recognize, primitive-recursively, a "terminal" stage in the computation at which point the

value o f the function can be "extracted" primitive-recursively from the Gddel number.

Thus we establish the normal form theorem that each general recursive function is

obtainable from primitive recursive functions with (exactly) one application o f the

Kleene minimization operator (Kleene 1981, p. 60). Kleene's approach must have made

an impression on Turing, for he cites Kleene's work and adapts it quite naturally to his

1937 demonstration that every Turing-computable function is general recursive. In fact,

Turing proceeds exactly as Kleene had: he describes an arithmetization of complete

configurations (the "stages" in Turing-computation) and proves that the operation o f the

machine can be described primitive-recursively. Then Turing uses Kleene's minimization

operator to identify the point (the "terminal" stage) at which the output can be read from

the tape (the "extraction").

The early equivalence results relating the general recursive functions, the X-

deflnable functions and the Turing-computable sequences are, perhaps, the most

compelling mathematical evidence for the Church-Turing thesis, and by implication,

evidence that the Turing machine itself is an adequate model o f computation. But it is

likewise compelling that, working independently, Turing confronted the same kinds o f

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

problems as those working in the States and that he was able to adapt extant work so

directly once he became aware o f it. Even if Turing's work was something of a

"rediscovery" it is still remarkable that it could piggyback so easily on the mathematical

evidence that was already supporting Church's work.

3. The Turing Machine and Resource-Bounded Computation

As we will see in Chapter 4, by the time the Turing machine had become

entrenched as the de facto model o f computation, it was becoming clear that if the theory

of computation was to have any connection to real computing then it would have to take

resource-bounds into account. Once again, the Turing machine proved to be a compelling

model; the transition from one complete configuration to the next was a natural analogue

for a "unit o f time" while the machine's tape cells were readily viewed as "units o f

space." Moreover, the Turing machine was robust in a resource-bounded sense, both in

terms of modifications o f the model and with respect to other models o f computation. For

example, in their classic 1965 paper, Hartmanis and Steams initiate the theory of

computational complexity using the multi-tape Turing machine as their model of

computation because "it closely resembles the operation o f a present day computer”

(Hartmanis and Steams 1965, p. 287). Indeed, with respect to the manner in which

information is retrieved, a Turing machine that accesses several different tapes

simultaneously is much more like a modern computer than a single-tape Turing machine

that must access information in a strictly sequential manner. More important, such multi

tape machines are no more powerful than single-tape machines in unbounded contexts,

but as Hartmanis and Steams point out, the extra tapes do make a difference when we

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

worry about how long the computation takes (multi-tape machines are faster). Still, even

in a time-bounded setting, it turns out that it makes no theoretical difference whether we

think in terms of a Turing machine working with multiple tapes or whether we stick to

the model of a single-tape machine. Hartmanis and Steams prove that a single-tape

machine can simulate a multi-tape machine with at worst a quadratic increase in the time

o f computation. The idea is to store the n symbols currently scanned on each of the n

tapes o f a given multi-tape Turing machine, MT, in a contiguous block of n cells (called

it the 0 block) on the single tape of a machine ST. The symbols immediately to the right

(or left) o f each o f the n scanned symbols o f M T are stored in another contiguous block to

the right (or left) o f the 0-block on the ST 's tape, and so on. With M Ts transition table

"hard-coded" into the control, ST does the following for each of M Ts moves: First, ST

scans the symbols in the 0 block to determine M Ts next state and what M T will do to

each tape (e.g., print, erase, shift left or right). Next, ST prints the appropriate symbols in

the 0-block; then starting from the leftmost printed square, ST sweeps across its tape from

left to right and for each tape M T shifts to the right, ST shifts the corresponding symbols

from each block into the next block to the right. Upon reaching the rightmost square, ST

sweeps back across its tape, repeating the process for each tape MT shifts to the left.

Finally, ST returns to the 0 block and starts simulating AfTs next move. The number of

moves ST makes is linearly proportional to the length o f the tape it must traverse which

itself grows in linear proportion to the number o f moves MT makes. So if M T makes t

moves, each of which requires roughly t moves for ST to simulate, then ST makes, at

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

•) mmost, r moves.

In a similar vein, Hartmanis and Steams show that a Turing machine with access

to a 2-dimensional tape can be simulated by a Turing machine with a linear tape with

only a quadratic loss o f efficiency. This result is the time-bounded analogue of Kleene's

proof and it is important for similar reasons. Just as Kleene's proof suggests that the

Turing machine is a sufficiently general model o f computation, Hartmanis and Steams'

so-called square law suggests that the Turing machine is sufficiently robust with respect

to time-bounds. As Papadimitrou puts it, these results give us reason to believe that

"there is no conceivable ‘realistic’ improvement on the Turing machine that will increase

the domain o f languages such machines decide, or will affect their speed more than

polynomially" (Papadimitriou 1994, p. 3 1).

Finally, much like the equivalence results o f the '30s, there are time-bounded

equivalences relating the Turing machine to different models o f computation. For

example, in 1963 Shepherdson and Sturgis introduced the unlimited register machine as

another idealized model o f computation. A register machine consists o f a program and

10 N.b., complexity theorists are not interested in constant terms and linear factors. The
constants are discounted because complexity theorists are worried about rates o f growth
(i.e., the proportional contribution a constant value makes to the time it takes to compute
decreases as the length o f computation time increases), while the linear factors are
ignored on the basis o f a "linear speed up theorem" which trades on the fact that
computation time can always be improved at the cost o f a more complex tape alphabet,
or a greater number o f internal states.

Also, we should note that as far as the complexity theorist is concerned, a quadratic
loss o f efficiency is an acceptable cost. In fact, as we will see in Chapter 4, polynomial
complexity (o f any reasonably low degree) has been equated with tractability.
Exponential growth rates, on the other hand, make problems hard. As any undergraduate
logic student knows, it is easy to determine whether a propositional formula of 3 atoms is

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

denumerably many registers each o f which can store a natural number (only finitely

many registered are used during the execution o f a program). A program is sequential list

o f instructions which take register indexes as arguments and perform basic operations on

register contents. Shepherdson and Sturgis introduce only six kinds o f instruction: there

are instructions for incrementing, decrementing and clearing registers, along with an

instruction for copying the contents o f one register into another, and two jump

instructions to permit non-sequential flow of control in the program. (One jump is

conditional depending on whether or not a given register is empty, the other jump is

unconditional).

It turns out that the functions computable by register machines are exactly the

functions that can be computed by a Turing machine. For Shepherdson and Sturgis this

equivalence permits a more perspicuous proof o f the equivalence between the partial

recursive functions and the Turing-computable functions. At the same time, however,

they recognize the register machine as a significant step in "the ‘rapprochement’ between

the practical and theoretical aspects o f computation" (Shepherdson and Sturgis 1963, p.

218). In fact, subsequent treatments o f the register machine often emphasize the affinities

to actual computers; most writers are quick to point out the obvious resemblance between

the register machine "architecture" and RAM memory, and some even go so far as to talk

about "program counters" and designate specific registers as "accumulators." Likewise,

the instruction sets have been augmented to the point that they resemble the assembly-

level instructions o f existing computers; unlike Shepherdson and Sturgis' spartan set,

satisfiable; it is practically impossible to do the same for a formula with 6 atoms.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

writers now include higher-level arithmetic instructions (e.g., add, subtract, divide),

indirect register addressing and more complex jump instructions.

The net result is another equivalence relating a seemingly more concrete model o f

computation to the Turing machine. Most see this equivalence as further evidence for the

Church Turing thesis. Moreover, it turns out that a Turing machine can simulate a

register machine with only a polynomial loss o f efficiency. The trick here is to use a

contiguous block of tape cells containing <index:content> pairs to simulate the more

flexible memory of the register machine (along with routines for shifting and copying as

the contents o f each register grow and shrink). The register machine program can then be

"hard-coded" into the Turing machine control (assigning a group o f internal states to

implement each basic register machine instruction as a Turing machine subroutine). As

before in the single-tape simulation o f the multi-tape machine, the Turing machine

simulation o f each register machine instruction might require several steps, but in

general, the time it takes to simulate each step the register machine takes will be linearly

proportional to the amount of tape needed to store the register contents (which will never

grow more than linearly for each register machine instruction executed). Hence, if a

register program executes t instructions (each instruction requiring one unit o f time to

execute) then a Turing machine will require roughly r for its simulation.

The fact that a single-tape Turing machine can simulate seemingly more powerful

machines together with the fact that it can simulate altogether different models o f

computation is compelling evidence for the Church Turing thesis. Likewise, the fact that

these simulations result in only a polynomial loss o f efficiency is compelling evidence

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that the Turing machine is also the right model o f resource-bounded11 computation. The

similarity here is not accidental: A robust model o f resource-bounded computation makes

for a more robust model o f computation generally. The nagging exception is

nondeterminism. As we will see in the next chapter, although nondeterminism adds no

power to the unbounded Turing machine (more evidence for the Church Turing thesis), it

is seems that deterministic simulation of a nondeterministic machine results in an

exponential loss o f efficiency (perhaps evidence against the Church Turing thesis?).

4. Formal Grammars

The last thing to do before we try to tackle the more difficult questions about

nondeterminism is to introduce the definition of a formal grammar. The notion is due to

Chomsky (1959) and, as we will see in Chapter 4, it is at the heart o f another important

collection o f equivalences. Intuitively, a grammar is a set o f rules we apply to words,

noun-phrases, verbs-phrases, etc. in order to form (or identify) grammatically correct

sentences. Likewise, a formal grammar is a 4-tuple (V, T, P, S) where V and T are

disjoint finite sets o f variables (denoting syntactic categories) and terminal symbols

(words), P is a finite set o f productions (rules) and S is a specially designated element of

V (the "start" symbol). Productions are o f the form A -»a where A is a variable and a is a

concatenation o f elements from V u T . For example, we might think o f a simple

language with only two "words," a and b and two syntactic categories A (for a-phrases)

and B (for b-phrases) where the only grammatically correct sentence are those that begin

11 Even if all our discussion has focused on time-bounded computation, we speak more
generally of resource-bounded computation since a time bound implies an equal space

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with at least one a and end with twice as many b's. Thus we might define the

corresponding grammar G as:

<{A, B}, {a, b}, {S—»AB, S—>aSbb, A-»a, B—>bb}, S>.

So, if we think o f productions as derivation rules, we can derive the sentence "abb" by

starting with S, applying the production that yields "AB," which, in turn, yields "aB" by

the third production, before we finally derive "abb" by the fourth production. Similarly,

to derive "aabbbb" we would start with S and apply the second production to get "aSbb"

at which point we would follow the steps o f the last example to arrive at "aabbbb." It

should be clear, at least informally, that G generates all and only the sentences o f our

simple language. Taking "=>G" to be the reflexive and transitive closure o f f r o m our

production rules, we say that the languages generated by G is all the sentences w such

that S=>Gw.

Although the notion o f a formal grammar was introduced long after Turing

machine had been accepted as an adequate model o f computation, it still had a profound

influence on the development of theoretical computer science. In particular, a handful of

machine-grammar equivalences were explored in the late fifties and early sixties. It

turned out that by placing certain restrictions on the productions of a grammar (e.g. that

each production be of the form A—>tB or A-»B where t is a terminal symbol), it was

possible to relate the generative capacity o f various grammars with the power o f various

abstract machine models to recognize the sentences thus generated. As we will see,

questions about such equivalences led to surprising questions about nondeterminism.

bound (but not conversely).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

III. Philosophical Concerns about Nondeterministic Algorithms

0. Overview

In Chapter 1 we noted that there are at least four different ways to think about

nondeterminism. We suggested that this variety o f intuitions betrays a host o f

philosophical tensions, but we also recognized that a long tradition in theoretical

computer science has implicitly established a presumption o f continuity in both the

historical and conceptual development o f nondeterminism. In this chapter we will

examine an open question from complexity theory where the received theoretical

understanding runs counter to some very natural intuitions about algorithms. We will

point to a specific intuition about the workings of a nondeterministic machine as the

source o f these tensions and then sketch a brief history o f nondeterminism in theoretical

computer science. Finally, we will see that more recent theoretical developments are

unlikely to resolve these philosophical tensions.

1. Introduction

This chapter is motivated by a single footnote in Rogers' classic text, Theory o f

Recursive Functions and Effective Computability. The footnote comes on the second

page where Rogers discusses discrete stepwise computation and deterministic operation

as two o f five "essential" features of the informal notion o f algorithm. He notes, "In a

more careful discussion, a philosopher o f science might contend that *4 [i.e., discrete

stepwise computation] implies *5 [i.e., determinism]. Indeed, he might question whether

there is any real difference between *4 and *5" (Rogers 1967, p. 2).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

When we engage in that "more careful discussion" we must ask ourselves why

Rogers (or anyone for that matter) would regard the implication between discrete

stepwise computation and deterministic computation as philosophically obvious when

even a cursory glance at a text in complexity theory seems to provide a counter example:

the nondeterministic Turing machine, like the deterministic machine it generalizes, is

presented as a discrete stepwise model o f computation and yet it is clearly not

deterministic. Should we conclude that discrete stepwise computation has nothing to do

with determinism, or that nondeterminism has nothing to do with Rogers' informal

characterization of algorithm?

Neither option is attractive. Rogers motivates his discussion o f algorithms with an

analogy to digital computers. He claims that discrete stepwise operation corresponds to

the "digital nature" o f real computers, and that the sense of determinism— that is, not

having to "resort to random methods or deices, e.g. dice”— is reflected in the

"mechanistic nature" o f digital computers (Rogers 1967, pp. 2-3). The analogy is

compelling. Indeed, the paradigm of digital computing completely depends on an "edge-

driven" synchronous architecture and the ability to guarantee state transitions with

absolute certainty. It is hard to deny Rogers' claim that *4 implies *5 when intuitions

about discrete stepwise operation, determinism and the notion o f an algorithm are tied

together in the context of real computing.

At the same time, however, we cannot baldly assert that the study of

nondeterminism has nothing to do with the study of algorithms. Quite to the contrary, the

notion o f a nondeterministic algorithm is ubiquitous in complexity theory. The P=NP

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

question—the most celebrated open question o f theoretical computer science— is a

question about the difference (or lack thereof) between deterministic and

nondeterministic algorithms. Moreover, nondeterministic algorithms really are presented

as algorithms. For example, consider how Bovet and Crescenzi (1994, p. 70) describe a

nondeterministic algorithm to decide whether a Boolean form ula,/ consisting o f n atoms

is a member o f SATISFIABILITY, the language o f all satisfiable Boolean formulae:

A nondeterministic algorithm for SATISFIABILITY can be obtained by guessing
any of the 2" assignments of values to the n variables o f f and verifying whether it
satisfies f:

begin {input:J)
guess t in set of assignments of values to the n variables off,
if t satisfies/ then accept else reject;

end.

The are no scare-quotes or disclaimers in the foregoing passage. The use o f the Pascal

like language is deliberate and is intended "to provide a more succinct description of

algorithms" (Bovet and Crescenzi 1994, p. 47, emphasis added). Such descriptions of

nondeterministic algorithms appear side-by-side with, and are embedded in, deterministic

algorithms specified in the same language. Except for the "guess" operator, there is no

difference in the presentation of deterministic and nondeterministic algorithms.

There is a dilemma here with no easy solution. Although Rogers excludes those

methods that resort to "random devices" from his informal characterization o f an

algorithm, the "guessing" o f a nondeterministic algorithm is not random, hence, the sense

o f nondeterminism we might infer from Rogers' discussion does not help us. Our

dilemma is rooted in a much deeper and more subtle tangle o f intuitions. We will see

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

below that the nondeterministic Turing machine has been presented as further vindication

o f the Church Turing thesis and that intuitions stemming from the evidence of

extensional equivalence naturally resonate with intuitions about what it is to be an

algorithm. At the same time, however, many of the open problems in complexity theory

trade on intuitions about nondeterminism as mathematically useful description o f those

problems. We will argue that understanding why one such problem remains open

demands that we give up our intuitions of what it means to be algorithmic. We will also

see that the tension between these intuitions has been obscured by a third intuition that

supports a view o f complexity theory as a study of those questions that affect real

algorithms and real computers.

2. Getting to the Center of the Tangle

In this section we will do our best to present the nondeterministic Turing machine

in the light o f the received theoretical view. In other words, we will try to present the

nondeterministic Turing machine as it might be presented in an introductory text book on

the theory of computational complexity. Although the presentation in this section will be

deliberately a-historical, it will help us uncover the conflicting theoretical intuitions

about nondeterminism.

The study of computational complexity begins with the study o f computation and

the (deterministic) Turing machine is most often presented as an intuitively appealing

model o f computation (cf. Papadimitriou 1994, pp.!9ff). Various equivalencies between

the Turing machine and other models o f computation are demonstrated and adduced as

evidence for the Church Turing thesis: the claim that our intuitive notion o f algorithm

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be identified with the Turing's model o f computation (cf. Bovet and Crescenzi 1994,

p. 25; Smith 1989, p. 299).

At this point we might ask whether extending our model o f computation will

affect the class of Turing computable functions. For example, in fonnal language theory

Turing machines are used to decide membership in a language (i.e., used to compute a

characteristic function for a language like SATISFIABILITY), and it is often helpful to

relax the demand that the next move be uniquely determined by the current state and

input. As we indicated in Chapter 1, we define a nondeterministic Turing machine

exactly like a deterministic machine except that the current state and input does not

uniquely determine what the machine will do next (i.e., what state it will assume,what

action it will perform). It is hard to imagine how such a machine might work given that

its behavior is determined by a transition relation rather than a transition function.

Indeed, text books rarely described how such nondeterministic machines really work.

Instead, there is a handful of related heuristics. Some writers invoke metaphors about the

machine "guessing" what to do next (cf. Bovet and Crescenzi 1994; Smith 1989,

pp.299-302), while others appeal to a sense of parallelism (cf. Bovet and Crescenzi 1994,

p. 48; Papadimitriou 1994, p. 172). We will try to motivate nondeterminism in terms of

so-called computation trees (cf. Bovet and Crescenzi 1994; Papadimitriou 1994). The

common thread in each o f these stories is that the machine always guesses correctly,

always computes efficiently, always follows the accepting branch in a computation tree if

one exists.

Let us consider nondeterminism in terms o f a computation tree. A computation

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tree is a directed graph where the nodes represent a particular configuration of the state,

input and tape contents at a particular step in the computation o f a nondeterministic

Turing machine. A single node—the root—represents the initial configuration o f the

machine. Each (directed) edge represents a transition to one o f the (finitely many)

different configurations the nondeterministic machine might realize on the next step. The

leaf nodes represent all the possible final configurations o f the machine. On any given

input the computation tree might have several distinct branches, some of which lead to

acceptance and others o f which do not. So, to avoid ambiguous results on a given input, a

nondeterministic machine is said to accept an input if there is at least one "accepting

branch" in the computation tree, otherwise the input is rejected. In this context we can see

how intuitions about guessing and parallelism are related; to say that a nondeterministic

machine guesses is to say that it makes exactly the right choices so that it assumes the

sequence o f configuration reflected on the accepting branch of the computation tree (if

such a branch exists). Likewise, the intuitions about parallelism are rooted in the image

o f a nondeterministic machine somehow surveying all the branches in the computation

tree at once, but manifesting only the behavior o f the accepting series o f configurations

(if such a series exists). By contrast, the computation trees we might associate with

deterministic machines are more like computation twigs; in a deterministic computation

there is a single path from the initial configuration to the final configuration (either

accepting or rejecting) without any branching whatsoever. There is no guessing, no

implicit parallelism.

To return to the example of a nondeterministic Turing machine deciding the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

language SATISFIABILITY, we can think of the each node in the computation tree

representing the choice the machine must make between assigning a value of "true" or

"false" to a particular atom. Thus, if the input formula has n atoms, the computation tree

will have 2" different branches. Whether the nondeterministic machine surveys all these

branches in parallel, or whether it "guesses" a satisfying assignment, the machine accepts

if and only if there is branch in the tree that corresponds to a satisfying assignment. By

contrast, again, we can think of the deterministic computation twig as corresponding to a

sequential enumeration o f the 2" different assignments with each assignment checked in

turn to see if it satisfies the input formula. Although it must survey an exponential

number o f assignments, the deterministic Turing machine will eventually find a

satisfying assignment if one exists.

It might seem that allowing the machine to "guess" would yield greater

computational power but, as it happens, nothing changes; any language decidable on the

extended model turns out to be decidable on the original model. In other words, given a

nondeterministic Turing machine it is always possible to construct a deterministic

machine that will "simulate" the nondeterministic machine. The proof exploits the fact

that the behavior of a nondeterministic machine is determined by a finite transition

relation. Suppose we have a nondeterministic machine to decide whether a string o f input

is a member o f a given language. Given a description o f the transition relation o f the

nondeterministic machine, a deterministic machine can, on a given input, systematically

work its way through the branches o f the nondeterministic computation tree using its tape

to keep track o f the choices the nondeterministic machine can make. By looking at all the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

choices the nondeterministic machine can make after I step, 2 steps, 3 steps and so on,

the deterministic machine will eventually survey all the choices that could lead the

nondeterministic machine to accept. The deterministic machine will accept the input if

and only if there is an accepting branch in the nondeterministic computation tree. Thus,

the deterministic and nondeterministic machine compute the same characteristic function.

Here we see more evidence for the Church Turing thesis (see, e.g., (Bovet and

Crescenzi 1994, p. 20) or (Hopcroft and Ullman 1979, pp. 159-166)). The fact that a

nondeterministic machine is no more powerful than a deterministic machine with respect

to the class oflanguages it can decide is compelling. Moreover, we find that the

heuristics we have used to understand the behavior of a nondeterministic machine are

inessential in this context. For instance, the equivalence proof we sketched above

demonstrates that even if we think o f a nondeterministic machine as guessing during its

computation, we can eliminate those guesses in favor of an exhaustive search. We can

see immediately that such a search can be conducted deterministically, and hence we can

maintain our intuitions o f what it is to be an algorithm even though the notion o f a

"guessing" algorithm seems to have no place in the discussion of what can be

accomplished by machines.

But strange things happen when we introduce resource bounds and thereby shift

our attention from nondeterminism as a vindication o f the Church Turing thesis to

nondeterminism as a useful device in the theory o f computational complexity. The idea is

to keep track o f how much time (or space) it takes to compute. For instance, using the

Turing machine as our model o f computation, we can count the number o f steps (or tape

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cells) it takes to compute a given function. We are especially interested in those

characteristic functions that can be computed in a polynomial amount o f time where the

polynomial is a function of the length of the input string whose membership in a

language is being decided. When a characteristic function can be computed by a Turing

machine within a polynomial time bound, we say that the corresponding language can be

decided by a polynomial-time Turing machine.

As we indicated in Chapter I, the P versus NP problem asks whether the P, the

class of languages that can be decided by a deterministic polynomial-time Turing

machine is the same as the NP, the class o f languages that can be decided by a

polynomial-time nondeterministic Turing machine. Since we have already established the

equivalence between deterministic and nondeterministic Turing machines, it might seem

that we could use the same simulation technique to prove that P=NP. But we cannot.

To see why we cannot we note that although the simulation demonstrates how all

the branches in a nondeterministic computation tree can be surveyed systematically, there

will be, in general, exponentially many branches to survey. Even if each individual

branch can be surveyed in a polynomial amount o f time, it will take an exponential

amount o f time to survey every branch in the nondeterministic computation tree.

Although we can always use a deterministic machine to simulate nondeterministic

computation we do so with an exponential loss of efficiency with respect to the time it

takes to perform the computation.

Papadimitriou claims that the P versus NP problem is a matter o f understanding

"[wjhether this exponential loss is inherent or an artifact o f our limited understanding o f

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism" (1994, p. 45). At this point, however, there is nothing very mysterious

about nondeterminism; we define nondeterministic machines in terms o f transition

relations rather than transition functions, we point to a well-known simulation technique

and then find an exponential explosion in the time it takes to survey all the choices a

nondeterministic machine can make. If we look at nondeterminism in this light, it is not

surprising that the P versus NP problem would be described informally on the Claymath

web-page as the question whether there exists a certain kind o f problem that "really does

require a long time to solve" or whether "we simply have not discovered how to solve

them quickly." The intuitions about guessing, parallelism and bushy computation tress

are all colorful ways of describing the fact that some problems seem to engender an

exponential search-space. The heuristics we use to understand nondeterministic behavior

are inessential in this context. In fact, NP might as well stand for nonpolynomial rather

than nondeterministic. We say this even though Smith makes clear that, "’NP’ stands for

nondeterministic polynomial" not "nonpolynomial"(1989, p. 318). Presumably, Smith is

making sure his readers understand what the abbreviations stand for in a theoretical

context. But in a philosophical context, we might as well assume that "NP" abbreviates

nonpolynomial since it is clear how we can transform a nondeterministic algorithm into a

deterministic algorithm with an exponential loss o f efficiency. Nothing about such a

transformation challenges our intuitions about what it is to be algorithmic; it merely

suggests that the algorithms for some problems might take a long time to execute.

Still, our glib reinterpretation o f "NP" is reasonable only if we think that there is

nothing about nondetermimsm that needs to be understood apart from our usual intuitions

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

about algorithms. Such a view is implicitly supported when the equivalence between

(unbounded) deterministic and nondeterministic Turing machines is presented as

evidence for the Church Turing thesis. But suppose we take Smith to be reminding us of

something more fundamental than just the proper use o f abbreviations. Likewise, suppose

it is possible that our understanding of nondeterminism really is limited as Papadimitriou

suggests. The question then becomes one of making sense o f nondeterminism perse and

it is in this context that we find conflicting intuitions beginning to emerge.

Let us consider another open problem in complexity theory. We define the class

coNP as the class o f languages whose complement' can be decided by a nondeterministic

Turing machine in polynomial time. Now when we ask whether NP=coNP we run into a

problem. In the case o f deterministic machines the analogous question (P=coP?) is

trivially settled by observing that a Turing machine which decides a language in

polynomial time can be modified to decide the complement language in polynomial time

simply by interchanging the "accept" and "reject" states. It is tempting to make the same

argument in the case o f nondeterministic machines, but we cannot.

To understand why we cannot, let us again consider the language SATISFIABLE.

As we observed above, SATISFIABLE can be decided by a nondeterministic algorithm

and, moreover, it can be decided in polynomial time.2 Hence, SATISFIABLE is in NP

1 Given a finite alphabet, 2, the complement here is taken with respect to a decidable
set o f strings, S c: 2* so that given a language, L c S , the complement Lc = S - L (and
not 2* -L).

2 How? Recall that the nondeterministic machine does not survey all o f the
exponentially many assignments. Rather, it guesses an assignment if such an assignment
exists (in a single step) and then verifies that the assignment does indeed satisfy the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and its complement language of all Boolean formulae that are not satisfiable is in coNP.

If we take the nondeterministic machine that decides SATISFIABLE and simply switch

its "accept" and "reject" states (as we do to show that P=coP) the new machine will not

decide the complement language of Boolean contradictions but rather the language

consisting o f all those Boolean formulae which have at least one falsifying assignment

(cf. Bovet and Crescenzi 1994, p. 134). Had our naive solution worked, we would have

demonstrated that NP=coNP.3 Obviously, we cannot infer that NP^coNP from the failure

o f our single attempt, but we can look at our failure as a concrete example where the

nondeterministic polynomial-time algorithm we use to decide one language cannot be

transformed into another nondeterministic polynomial-time algorithm to decide the

complement language.

There is something peculiar about the explanation we just gave but once again we

find ourselves in a position where it seems that if we have to ask, we must not understand

the question. Even though the our explanation is drawn from a canonical example, text

books devote hardly a sentence or two to its explanation. For example, Bovet and

Crescenzi point out that it is "immediately" clear that the naive attempt to interchange

"accept" and "reject" states fails, but then they observe without further explanation that,

formula in question. The verification can be performed in polynomial time. In fact, if the
formula is presented in conjunctive normal form, the machine need only scan the input
once to see if the assignment makes a single literal true in each conjunct.

3 For suppose we have a NP-complete language, L (nb.,SATISFIABILITY is NP-
complete), such that LceNP. Let L 'eNP. Since L is NP-complete, L' < L, and moreover,
L'c < Lc. But LceNP, so L'ceN P and L'ecoNP. Hence, NP c= coNP. Conversely, suppose
L'ecoNP. Since L is NP-complete, Le is coNP-complete (since for any L"ecoNP, we
have L"ceNP, and so L"c < L, hence L" < L0), so L' < Lc. But since LceNP, Lc < L. Hence,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

"All attempts to design a nondeterministic polynomial-time Turing machine deciding

SATISFIABILITY1-' [i.e., the complement o f SATISFIABILITY] have failed up to now"

(Bovet and Crescenzi 1994, p. 134). Obviously, there is more to understanding why the

naive solution fails than simply observing that it does fail, as Bovet and Crescenzi do; for

if it were a trivial matter to understand why various attempts to solve to the NP~coNP

problem fail we wouldn't be here discussing an open problem. In fact, when we try to

understand what exactly has gone wrong with our naive solution to the NP=coNP

problem, we uncover a tension between our intuitions about algorithms and our intuitions

about nondeterminism as a useful mathematical device.

For instance, there is a very strong pre-theoretic intuition that algorithms compose

(think o f function calls and subroutines here). Let us recast our original impulse to

interchange "accept" and "reject" states more precisely in this light: Let us take theory on

its face and assume that we have a nondeterministic polynomial time algorithm that

decides SATISFIABILITY; that is, we have an nondeterministic algorithm that takes a

Boolean formula as input and outputs either "yes, satisfiable" or "no, not satisfiable"

according to whether the formula is in fact satisfiable. O f course, we also have a

deterministic constant time algorithm that takes either "yes, satisfiable" or "no, not

satisfiable" as input and outputs accordingly either "no, not contradictory" or "yes,

contradiction." Put these two algorithms together and it would seem we have a

nondeterministic polynomial time algorithm to decide the set o f Boolean contradictions.

Have we just shown that NP=coNP? The answer is an emphatic "no," but let us be

L' < L, and L 'eNP. So, coNP q NP. (See also Bovet and Crescenzi 1994, pp. 134-140).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

clear about the reason. The text book explanation does not attribute our nonsolution to a

peculiar constraint on o f the output o f the nondeterministic machine or, for that matter,

how the output should be understood. Indeed, such discussions about the nature of

symbol and interpretation are never even addressed. Rather, on the received view, our

composite algorithm fails because o f a fundamental asymmetry between yes and no

outputs from nondeterministic algorithms (cf. Bovet and Crescenzi 1994, p. 134;

Papadimitriou 1994, pp. 45-46).

Again, it is helpful to think about our non-solution in terms of the computation

trees we associate with nondeterministic Turing machines. The composite algorithm we

propose yields a "yes, contradictory" answer even if there is only a single rejecting

branch in the computation tree o f the constituent algorithm for SATISFIABILITY. What

we need is a composite algorithm to say "yes, contradictory" only if eve>y branch in the

computation tree o f the constituent algorithm for SATISFIABILITY rejects, but we do

not get that algorithm by composition.

Speaking more generally, we might say that nondeterministic Turing machines

have a very weak input-output relation, or even that the sense o f decide associated with

nondeterminism is very liberal (Papadimitriou 1994, p. 44). In fact, the relation is so

weak and the sense o f decides is so liberal that the output o f a nondeterministic machine

cannot be used as input to a deterministic machine. It does not follow, however, that we

can never compose deterministic and nondeterministic algorithms, for we talk about

nondeterministic algorithms with deterministic components all the time (e.g., every time

we display an NP-complete problem). The problem is that deterministic and

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterministic algorithms have different "implementations," so to speak, and we must

take care that composite algorithms produce their answers in the right way. In this case, it

turns out that our composite algorithm does not accept in the right manner and it ends up

saying "yes" too often.

So, do we abandon our pre-theoretic intuitions about composition? I do not think

so, for up till now we have seen that the heuristics we associate with nondeterminism are

inessential, but when we understand why our composite algorithm fails, we finally see an

instance where it makes a difference how we think about nondeterminism. In particular,

we see that our composite algorithm fails because it is so easy for a nondeterministic

Turing machine to output "yes" and so hard to output "no." The fact that nondeterministic

machines can guess correctly is essential here and it manifests itself in the asymmetry

between "yes" and "no" answers; a nondeterministic machine can always make a correct

"yes" guess (if one exists), but it cannot make all the necessary "no" guesses. If we do not

think about nondeterministic machines as always guessing correctly, we do not have the

asymmetry, and moreover, we do not have the putative separation between NP and coNP.

Note that the guessing here is not random, nor is it a reflection o f an irreversible process.

Rather, we are committed to a view in which the nondeterministic machine is somehow

inspired (either to make the correct guess all the time or to manifests the correct behavior

among all implicitly parallel behaviors). If a nondeterministic machine were to guess

randomly, then the very process that might lead it to discover an accepting branch would

also ultimately lead it to a survey o f all the rejecting branches, and again, we wouldn't

have the asymmetry on which the putative separation between NP and coNP rests. Thus,

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

it is theoretically important that we understand nondeterminism in terms of a very

peculiar sense o f guessing. More to the point, there is nothing about an inspired guess

that can be reconciled with our intuitions about what it is to be an algorithm, what it is for

a process to be physically nondeterministic or even what it is that the unlucky

mathematician does.

No doubt some will see foregoing arguments as too literally-minded. Perhaps they

will view words like algorithm, output and decides more metaphorically and will instead

point to another more abstract characterization o f the NP=coNP question. For them, the

suggestion that NP^coNP amounts to a claim that there is something fundamentally

different about deciding SATISFIABILITY and deciding the set o f Boolean

contradictions. They will readily agree that there is nothing realistic about the inspired

guessing of a nondeterministic algorithm, but that such intuitions underwrite an

interesting mathematical characterization of a class of problems.

To make good on such a claim we need a characterization o f the NP=coNP

problem that allows us to focus our attention on intrinsic features o f the decision

problems at hand rather than our intuitions about machines. So let us forget about Turing

machines and algorithms and instead consider how we decide SATISFIABILITY and the

set o f Boolean contradictions using something like a truth table. The first thing to notice

is that we can certify that a Boolean formula is satisfiable by looking at a (well-chosen)

single row o f a truth table where, by contrast, a single row in a truth table can tell us only

that a Boolean formula is not a contradiction. We might say that problems in NP have

succinct certificates while problems in coNP have succinct disqualifications. That is, it is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

easy to certify that a formula is satisfiable and it is likewise easy to certify that a formula

is not a contradiction, but it is hard to certify that a formula is not satisfiable or that is it a

contradiction. Once again, we see an asymmetry between certifying a Boolean formula as

satisfiable and verifying a formula as a contradiction, only this time the difference is

evident in the relationship between negated quantifiers rather than in our definition of

acceptance by a nondeterministic Turing machine. Moreover, given this more general

logical characterization, it really does seem that we have hit upon an intrinsic feature of

the NP=coNP problem as opposed to some artifact o f a peculiar machine definition.

But recall that a decision procedure is given by describing algorithms for both

positive and negative tests, and the negative test for SATISFIABILITY involves

inspecting every row o f a truth table, which is exactly what we must do to verify a

formula as a contradiction. As the name o f the NP=coNP question suggests, the problem

of deciding SATISFIABILITY and the problem of deciding the set o f Boolean

contradictions are completely complementary problems. Indeed, when we consider both

positive and negative tests, the only asymmetry between the two decision procedures is

that wherever the one says "yes" the other says "no" and conversely; a complete

specification o f one algorithm together with a trivial transposition of answers gives, ipso

facto , a complete specification for the other algorithm.

Moreover, the observation that we need only inspect a single row in a truth table

to certify that a formula is satisfiable, but that we need to survey every row to certify that

a formula is contradictory, is not quite the difference in kind that we might expect.

Indeed, such an observation is cold comfort to the beginning logic student who knows

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

full well how to use a truth table to decide satisfiability, but must take an exam where all

the Boolean formulae have been deliberately constructed so that a single satisfying

assignment appears in the last row in the canonical enumeration of truth-assignments.

The point here is not how to make freshmen logic students unhappy (although that point

is certainly worth noting), but rather, that it is hard to appreciate two algorithms as

fundamentally different just because one might terminate before the other.

The trick is to make these points without seeming ignorant or stubborn. We do

not mean to suggest that complexity theorists have overlooked a trivial nondeterministic

polynomial-time algorithm to decide all Boolean contradictions and we should take

seriously the putative separation between NP and coNP suggested by the failure so far to

find an NP-complete language whose complement is also in NP. We should also

recognize the fact that the putative separation between NP and coNP allows a finer

grained classification for some problems.4 Rather, our point is that understanding simple

ziortsolutions to the NP=coNP either entails a view of Turing machines that weighs

against some very natural intuitions about algorithms or shows that we must embrace a

more general logical distinction between algorithms that seems to mark no substantive

difference outside o f a purely theoretical context.

4 As Papadimitriou explains, we can use NP and coNP to classify problems that
require exact solution (1994, p. 412). For example, consider the exact traveling salesman
problem where we are given a list o f cities, a distance matrix and an integer k. The
problem is to decide whether there is tour of all the cities where the total distance
traveled is exactly k . There is no obvious nondeterministic algorithm to decide the
problem directly, but we can classify it as the intersection between an NP problem and an
coNP problem: namely, is there a tour that covers a distance no greater than k, and is
there a tour that covers a distance o f at least k.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The NP=coNP problem represents a crossroads o f sorts. It marks a point at which

we turn away from a discussion where intuitions about nondeterminism resonate

naturally with our intuitions about machines and what it is to be algorithmic, to a

discussion of nondeterminism per se in which we seem to abandon our intuitions about

algorithms. Consider how Papadimitriou describes the situation,

The nondeterministic Turing machine is not a true model o f computation. Unlike
the Turing machine [i.e., the deterministic Turing machine] and the random
access machine, it was not the result o f an urge to define a rigorous mathematical
model for the formidable phenomenon o f computation that was being either
envisioned or practiced. Nondeterminism is a central concept in complexity
theory because of its affinity not so much with computation itself, but with the
applications o f computation, most notably logic, combinatorial optimization and
artificial intelligence (1994, p. 49, emphasis in the original).

We see now the extent to which our intuitions about nondeterminism and computation

have given way to intuitions about nondeterminism as a useful mathematical device.

There is, o f course, a presumption that these intuitions are reconcilable— that we are

standing not so much at a crossroads o f two divergent paths but rather at a point o f

contact between two approaches to the same theory. But we have good reason to doubt

such a presumption. For starters, when we reflect on the original motivation for a theory

of complexity we find that researchers felt it was time to "deal realistically with the

quantitative aspects o f computing" (Hartmanis and Hopcroft 1971, p. 444).s At the very

least, recognizing the original motivation for a theory o f computational complexity

suggests that there will be a non-trivial story to tell about how we got from a theory

5 We'll also see below that even automata theory, the more general theory o f "abstract"
machines, was often motivated with an appeal to the better understanding of real,
concrete computers.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ostensibly concerned with concrete machines and real algorithms to one where the focus

has shifted to, among other things, the finite model theory o f second order logic. (We

will try to tell that story below and in more detail in Chapter 4.) Our immediate concern,

however, is how to make sense o f the seemingly contradictory intuitions about

nondeterminism.

Let us summarize the conceptual development. Understanding the received

theoretical view often begins with a demonstration o f the equivalence between

deterministic and nondeterministic Turing machines. The proof is presented as further

evidence for the Church Turing thesis. When we impose a polynomial-time bound that

equivalence comes into doubt, but our intuitions about nondeterminism remain anchored

to thoughts about algorithms and machines insofar as we understand nondeterministic

algorithms as colorful descriptions o f exponential search spaces. But as we delve more

deeply into the theory, and as we begin to think about nondeterminism perse, we find an

example where it is hard to understand the problem without giving up our intuitions

about algorithms. Indeed, the anchor to our intuitions about algorithms is lost when we

must think about nondeterminism in terms of inspired guessing. The justification for such

a view of nondeterminism is that it underwrites a (peculiar) distinction, and hence, yields

an interesting mathematical characterization of a class problems. All the while, we talk

about the nondeterministic Turing machine, as if the intuitions surrounding it were a

clear and consistent. But when we look closely we find a tangle o f intuitions.

In their classic text, Hopcroft and Ullman suggest that we might avoid all this

confusion "As long as our intuitive notion o f ‘computable’ places no bound on the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number o f steps or the amount of storage..." (Hopcroft and Ullman 1979, p .166). In other

words, we might still identify the Turing computable functions with the intuitively

computable functions, think about nondeterminism as further vindication for such a

position and simply ignore complexity theory.

Or perhaps we should ignore the Turing machine instead. This is exactly what

Stewart suggests when he announces "The Demise o f the Turing Machine in Complexity

Theory"(l996). At first blush, it is hard to imagine how we could even hope to develop a

theory of complexity without some robust, undergirding notion o f algorithm (either

Turing's or one o f the equivalent notions). It turns out that Stewart's motivations are more

pragmatic than his sensational title suggests: he wants to strip away the cumbersome

detail o f Turing machine "code" from the theory and hopes that the vast resources of

formal logic might help crack some of the seemingly intractable problems in complexity

theory. But on a deeper level Stewart's motivations reveal exactly what is entailed in the

shift from a more intuitive theory o f complexity to the theory about the applications of

computing: without the Turing machine and the concomitant intuitions about algorithms,

assumptions about nondeterminism are justified by their theoretical fecundity rather than

their intuitive cogency. As we observed above, "NP" becomes just a label for some class

o f problems. All that matters on this view is that we have some way o f characterizing

classes o f problems and that characterization can be logical and abstract or premised on

an "unrealistic model o f computation" (Papadimitriou 1994, p. 45, emphasis in the

original).

Theory will often have a life o f its own quite apart from practice. Even if the idea

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o f a guessing computer is anathema to today's digital engineer,6 the idea o f a

nondeterministic algorithm clearly plays a central role in today's complexity theory. Still,

we confront a philosophical dilemma when we take the theory at face value: we have just

seen that there is tension among our intuitions about algorithms, determinism and

resource bounds; either we ignore resource bounds (and 35 years o f theoretical work)

when we formalize our notion o f algorithm or we embrace a theory that has seemingly

divorced itself from our natural intuitions about algorithms. It is possible that the theory

itself might someday reconcile these positions, but given the extant work on relativized

computation and the more recent attempts at independence proofs for the P=NP question,

we must remain circumspect about the theoretical ends justifying the means.7 In the

meantime, it will be hard to tell whether continued work reflects the articulation of a

detailed theory of complexity or the first symptoms of a degenerating research program

pursued "purely for aesthetic reasons" (Stewart 1996, p. 222). A wait-and-see attitude

will not help us here. Pace Hopcroft and Ullman, we can neither ignore complexity

theory nor wait for results that might someday reconcile our intuitions about

6 And it really is. Speculation about future technology notwithstanding, as we
indicated above, one of the central motivations for today's synchronous design paradigm
is the predictable evolution from state to state in the control o f a computer. The idea that
the next state might not be completely determined by the present state and input is more
likely to come up in discussions o f transition or output races and it is hardly a welcome
thought. See, e.g., (Prosser and Winkel 1996, pp. 170-175, 191-194).

7 We also do well to remember some o f the unexpected results about space complexity
here. For example, reflecting on (Savitch 1969), Hartmanis recalls that he "never
suspected" a sub-exponential deterministic simulation of tape-bounded nondeterministic
computations (Hartmanis 1981). And more recently, Immerman's 3-page (1988) result
settled a longstanding problem proving that nondeterministic space is closed under
complementation—a notoriously difficult problem that was at one time conjectured to

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism.

3. One Idea from Three Traditions

Given that it is so hard to see where the theory o f computational complexity is

going, it might make more sense to see where it has been. Indeed, if we could place the

idea o f a nondeterministic Turing machine in a robust historical context, we might be

able to make more sense of the philosophical dilemma described above. But making

historical sense o f nondeterminism turns out to be a doubly hard task; not only has the

historical work on theoretical computer science just begun, historiographic tensions have

already become evident. Insofar as there is a received history o f nondeterminism, it is

characterized somewhat oddly both as a continuous and seamless development of ideas

and as a locus for the unexpected convergence o f seemingly orthogonal interests. For

example, in their seminal paper, Hartmanis and Steams (1965) cite Davis (1958) who, in

turn, refers the reader to a long list o f references to Kleene and Post. And, of course,

everyone mentions Turing's 1936 paper. Thus there appears to be a natural progression of

work starting with Turing and culminating in the theory o f computational complexity. At

the same time, however, theoretical computer science (broadly speaking) is widely

recognized to be the product o f three different disciplines. This convergence occurred in

the late fifties and early sixties as ideas from recursion theory, formal language theory

and complexity theory came together as the central threads in theoretical computer

science. These conflicting historical emphases make it all the harder to uncover the origin

o f the nondeterministic Turing machine. Nevertheless, let us do our best and proceed by

have a negative solution.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

reconstructing the received history around the framework given by Greibach (1981).

We begin by noting that although Turing mentions "choice machines" in his 1936 paper,

they are seemingly excluded from the formal development of Turing's Turing machines.8

As Hodges (1983) points out, whatever Turing thought about nondeterminism is probably

better understood in either a much wider philosophical context o f free will versus

determinism or, perhaps owing to his experiences with cryptography during the Second

World War, how machines might be constructed "whose behavior appears quite random

to anyone who does not know the details of their construction" (Hodges 1983, pp.

441-442). Moreover, those who carried on Turing's tradition by developing a rich theory

of computation focused exclusively on deterministic machines. In his 1957 address on

"The Present Theory o f Turing Machine Computability," Rogers describes the theory as

an investigation of what can be done on a digital computer with "explicit deterministic

programs of instruction" (Rogers 1969, p .130). Likewise, except for a footnote excluding

machines with "random" elements from the discussion, there is simply no mention of

nondeterministic machines in Davis' influential 1958 text on computability theory.

Finally, Minsky (1967, p. 314) comes closest to discussing the what we would call

nondeterminism when he describes (in the index) a "non-determinate" machine "whose

behavior is not entirely specified in the given description." He goes on to note, however,

that such machines are not discussed in his text. Thus we see that idea o f a

nondeterministic machine, though recognized at some level, was not considered germane

8 Actually, there is much more to say here, but we will postpone that discussion until
Chapter 4. We give a hint o f the discussion in note 11 below.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to the study o f algorithms.

By 1957, the theory o f effective computability was well developed mathematically with

applications ranging from the study of logic and mathematical foundations to recursive

analysis. But it was no longer a theory which that with practical questions about real

computers (see, e.g., Rabin and Scott 1959; Rogers 1969). The Turing machine was so

powerful a model o f computation as to be uninteresting in many applications (see, e.g.,

Chomsky 1959, p .138). Then in 1959 Rabin and Scott published their "Finite automata

and their decision problems," pointing to the finite automata as a "better approximation

to the idea o f a physical machine" (p. 2). More important, that paper contained what is

widely believed to be the first explicit, formal discussion of a nondeterministic machine

along with a proof o f the equivalence between deterministic and nondeterministic

automata.9

At roughly the same time, the Chomsky hierarchy was introduced in (Chomsky

1959). The hierarchy consists o f four types o f grammar (corresponding to four kinds o f

formal languages) each of which is characterized in terms of the restrictions it places on

the rules o f that grammar. Proper containment among the four corresponding languages

9 Once again, the proof introduces an exponential explosion, only this time the jump
comes in the number o f states and not the amount of time required to perform the
simulation. Unfortunately, the simulation o f nondeterministic automata does not
generalize to Turing machines and so the Rabin and Scott paper, as famous as it is, brings
us no closer to understanding when the equivalence between unbounded deterministic
and nondeterministic Turing machines was established. The best 1 can do is to point to
three sentences in a footnote in Turing's original paper where he describes how to start
with a choice machine to construct an "automatic" (i.e., deterministic) Turing machine.
But there is a long story to tell about that note concerning the perceived naturalness of
Turing's account and perhaps ultimately the widespread acceptance o f his model over

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

was demonstrated along with some interesting affinities to recursion theory (e.g., type-0

languages = r.e. sets, type-1 languages = recursive sets). More significant, connections

between grammars and machines were developed. Greibach points out that by 1958

Chomsky and Miller had essentially defined the type-3 grammars in terms of finite

automata and that subsequent work on the finite-state languages most often pointed to the

1959 paper by Rabin and Scott (Greibach 1981, p. 18). Here we see an unexpected

convergence: the connections between the theory of abstract machines and formal

grammars is one of the first overtures between two otherwise disparate research

programs.

On the received view it is easy to see how this connection grew stronger with the

development o f type-2 grammars and their relation to push-down automata. The idea of a

last-in-first-out storage had applications to the syntactic analysis o f both natural and

artificial languages; in particular, it was suggested in 1960 that the push-down store

might be useful in the compilation of ALGOL while at the same time it was being used in

the mechanical translation o f Russian into English (Greibach 1981, pp. 19-22). In 1962

Chomsky proved the equivalence between the context-free languages and those accepted

by nondeterministic push-down automata, and by 1964 it was clear that the deterministic

context-free languages were properly contained within the nondeterministic context-free

languages (Greibach 1981, p. 22 & p. 25).

The last machine-grammar connection to be made in the Chomsky hierarchy was

between the type-1, or context-sensitive grammars, and the linear-bounded automata.

others models o f computation.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Unlike the finite state machine or the push-down automaton, the linear-bounded

automaton was not a new kind of machine but simply a Turing machine (originally

deterministic) limited by the input length in the amount o f tape it could use (Greibach

1981, p. 23). But if the model seemed familiar, the questions it raised were not. Greibach

recalls that despite the other well known equivalences between deterministic and

nondeterministic machines, proofs with respect to the context-sensitive languages

seemed difficult because no one was really accustomed to thinking nondeterministically

(Greibach 1981, p. 24). So it seems that thinking about linear-bounded automata must

have made thinking about nondeterminism more familiar. It also seems that the focus on

the linear-bounded automaton would have made for a very natural dovetailing between

automata and formal language theory on the one hand and complexity theory on the

other. For by 1964 not only had Kuroda completed the Chomsky hierarchy by relating

the type-1 grammars to nondeterministic linear-bounded automata, but Hartmanis and

Steams had introduced a robust theory o f computational complexity. The study of linear-

bounded automata finally presents us with a candidate problem around which different

ideas about machines, determinism and resource bounds might have crystallized.

Unfortunately, the history we have just presented raises more questions than it

answers. For instance, Hartmanis recalls that it was an unnatural hitch in Rabin and

Scott's (unpublished) definition of two-way automata which led Myhill to define the

linear-bounded automaton in 1960. Hartmanis goes on to remark how such "an innocuous

and unnatural model can trigger a fruitful investigation" (Hartmanis 1981, pp. 48-49).

True enough, but on a view like that we are forced to ask how it happened after 1965 that

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism, by then an assumption that could no longer be regarded as innocuous,

was reconciled with a complexity theory where the time-bounded deterministic Turing

machine was chosen as a model for its obvious resemblance to the "operation o f a present

day computer" (Hartmanis and Steams 1965, p. 287). It is likewise remarkable that the

first serious questions about nondeterminism were raised with respect to the linear

bounded automaton, which itself was considered to be a "more natural model for

computers" (Hartmanis 1981, p. 48). Part of the answer comes from Greibach who recalls

that attention had centered on the context-sensitive languages because the connections at

the top o f the hierarchy (type-0 = r.e. languages) had already been worked out by

Chomsky and because the equivalence between unbounded deterministic and

nondeterministic machines had been proposed in a 1963 dissertation by Evey (Greibach

1981, p. 24). Greibach's claim is surprising, for the 1959 proof by Rabin and Scott of the

equivalence between deterministic and nondeterministic finite state machines is

consistently cited, while the Evey dissertation, when it is cited, only appears in the

context o f push-down automata (see e.g., Hopcroft and Ullman 1969, pp. 45 & 79). It

seems odd that an equivalence proof that is so ubiquitous in text books and so

troublesome in complexity theory could hang on such a recondite source.

Thus it seems that while the other nondeterministic machines were explicitly

introduced as they related to the Chomsky hierarchy, the idea o f a nondeterministic

Turing machine crept into theoretical computer science rather quietly. In the case of

finite automata, nondeterminism was presented as a conservative assumption. The

assumption proved to be more interesting with respect to push-down automata when

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

separation between the deterministic and nondeterministic machines was established.

Even in the case of tape-bounded automata, where answers have often been a long time

coming, it must have been reassuring when Savitch (1969) demonstrated that a

nondeterministic machine working in polynomial space could still be simulated

deterministically in polynomial space. But while nondeterminism was proving to be

rather well-behaved with respect to space, there was no such comfort to be found with

respect to time. Cook (1971) introduced the idea of an NP-complete problem (i.e., a

problem which characterizes the difficulty of all the problems solvable by a

nondeterministic machine working in polynomial time) and by 1972, Karp had presented

a veritable laundry list of NP-complete problems and demonstrated that either all the

problems are solvable in deterministic polynomial time or none of them are. Thus began

a long and philosophically strange journey into complexity theory.10

4. Where do we go from here?

Although there are unsettling gaps in the received history, there are also hints o f a

grand continuity. For instance, like Hilbert long before him, Cook was preoccupied by

questions about mechanical theorem-proving and hoped that his work would "bring out

fundamental limitations and suggest new goals to pursue" and ultimately "stimulate

progress toward finding better complexity measures for theorem provers" (Cook 1971,

p. 157). Once again we see affinities between logic and complexity theory, only this time

the emphasis is historical and it suggests a new way of understanding how the theorist is

10 Moreover, the bibliographic trail from Karp through Cook points back to familiar
sources, (Hopcroft and Ullman 1969) in particular, and again fails to reveal a reference to

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(and has been) able to countenance an otherwise counter-intuitive notion o f a

nondeterministic Turing machine. The story goes something like this: The longstanding

historical connections between logic and complexity theory are not accidental; ideas and

techniques from one discipline have inevitably made their way into the other. The

nondeterministic Turing machine is a case in point: rather than try to understand

nondeterminism directly, we should instead think of how we go about proving theorems

in an axiomatic system. The first thing we notice is that although the rules o f proof are

strictly specified in an axiomatic system, the system itself does not determine which rule

is applied at any point in a derivation. In exactly the same way, while a nondeterministic

Turing machine has only finitely many different configurations it might realize on the

next step, there is no telling which configuration it will realize. The nondeterministic

Turing machine is thus seen by many in a natural context, both historically and

conceptually, as a useful way of characterizing derivations in formal systems.

There is something comforting about this story, but ultimately it does not explain

the gaps in the received history, it only conceals them. When we look carefully at the

original theoretical justifications for nondeterminism we find a wide variety of

motivations, some of which are logical while others are not. Ultimately, the study of

these disparate motivations brings us no closer to resolving the philosophical dilemma

we described above.

Having failed to find any historical solace, we can only hope that our worries will

someday be resolved theoretically. There are three avenues o f research in the current

the explicit introduction o f the nondeterministic Turing machine.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

state of the art. In one direction the theory becomes even more abstract; in the other we

see the signs o f a theoretical regress; and in the third direction we see the potential for the

theory o f computational complexity to be rendered moot.

4.1 Looking at alternation to understand nondeterminism

Chandra and Stoclemeyer (1976) introduced the idea o f alternation as a

generalization of nondeterminism. As we indicated in Chapter 1, the idea is to consider

the computation tree we associate with a nondeterministic machine, and imagine that at

some nodes in the tree the machine must survey all the branches below that node, while

at other nodes the machine need only survey a single branch. In this sense, the machine

alternates between what we might call existential and universal behaviors. Alternating

machines generalize nondeterministic machines in the sense that nondeterministic

machines exhibit only the existential behavior (i.e., nondeterministic machines choose a

single path through the computation tree). Chandra and Stockmeyer established some

interesting relations between time and space complexities and subsequent work (e.g.

Kannan 1981; Paul et al. 1983) has shown separation between deterministic and

nondeterministic time under particular constraints. Many, however, see results like these

as symptomatic o f trend toward scholasticism in complexity theory. Moreover, results

like these focus on the applications o f computation and, as we have already suggested,

the philosopher's computational interests are more likely to resonate with issues o f

mechanism rather than logic. While the persistent use o f the word "machine" suggests

continuity, it is not clear that intuitions about algorithms find any natural place in the

discussion of a machine-free complexity theory. This is not to say that such an

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

explanation cannot be given, but rather that it has not yet been given. Without a more

robust philosophical account relating notions o f effectiveness and formal logic (i.e., an

account that does not presuppose that the connection has already been forged by the work

in theoretical computer science), focus on alternating Turing machines will do little to

resolve our conflicting intuitions about nondeterminism.

4.2 Redefining nondeterminism

A second direction is followed by Spaan, Torenvliet, and van Emde Boas (1989)

who modify the definition o f acceptance by a nondeterministic machine in such a way

that the recursion theoretic distinction between the recursive and recursively enumerable

sets (a distinction that never had anything to do with nondeterminism) can be viewed in

analogy with the putative distinction between P and NP (a distinction which has

everything to do with nondeterminism). Their idea is to impose a fairness condition such

that a nondeterministic machine, when given a choice between transitions to two

different configurations, is guaranteed to explore both transitions after some finite

number o f steps. In other words, a fa ir nondeterministic machine will eventually explore

all its choices, whereas an unfair nondeterministic machine is guaranteed to survey only

those choices that lead to acceptance, provided such a sequence exists. There is no

guarantee that an unfair machine will explore all the choices available to it.

The motivation to introduce the notion o f a fair nondeterministic machine follows
from

the self evident observation that in the world o f unbounded computation
nondeterministic devices are more powerful than deterministic ones as
exemplified by the inequality REQtRE... the nondeterministic devices could
guess and verify the halting computations which a deterministic device cannot

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

produce (Spaan, Torenvliet, and van Emde Boas 1989, p. 187).

In particular, we can imagine a fair nondeterministic Turing machine deciding the

Halting problem11 as follows. Let M be a fair nondeterministic machine M such that M

can simulate any other deterministic machine M' on any input. During its computation, M

chooses nondeterministically either to simulate M 'o vM simply prints a "0" and halts. If

M' halts on its input, it does so after a finite number o f steps, at which point M halts and

prints a "1." If, however, M' does not accept its input, it will never halt and the simulation

of M ' could diverge (i.e., continue indefinitely). But since M is fair, it must after some

finite number of steps must choose not to simulate M ' and instead will print a "0" and

halt. After some finite number of steps, M will either print a " 1" if M ' halts on its input, or

M will print a "0" if M' does not halt on its input. Hence we have a fair, unbounded

nondeterministic machine that solves the Halting problem— something no deterministic

machine can do, and thus we have a separation between deterministic and

nondeterministic devices in the unbounded case that parallels the suspected separation

between such devices in the time-bounded case (Spaan, Torenvliet, and van Emde Boas

1989, pp.188-190).

Although the notion o f fairness has well-established roots in the theory of

concurrent processes, the argument Spaan, Torenvliet, and van Emde Boas give might

seem a bit slippery.12 Indeed, because it contradicts the well-know unbounded

11 See (Rogers 1967, pp. 24-26) for a description o f the Halting problem.
12 In fact, the presentation o f the proof given in (Spaan, Torenvliet, and van Emde

Boas 1989, pp. 189-190) is a bit hard to follow. At one point they state that a bound is
specified in advance indicating how many steps M must simulate M ' and if M ' "accepts

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

equivalence between deterministic and nondeterministic Turing machines, we might see

the proof here as a reduclio to establish that the notion o f a fa ir nondeterministic machine

has no place in the traditional theory o f recursive functions. But even if we worry about

the cogency o f the proof, we should still take note of what has motivated Spaan et al to

challenge the tradition. In particular, they report that,

All o f this work was inspired by the frustration originating from the difficulty o f
the fundamental problem in computational complexity which has become known
as the P=NP? problem (Spaan, Torenvliet, and van Emde Boas 1989, p .187).

They continue,

Given the difficulty o f solving the P=NP? problem we have considered to modify
the realm o f recursive function theory instead. We propose in the following
section the adoption o f an alternative acceptation convention for the
nondeterministic version o f the Turing machine for recursive function theory such
that the difference we suspect between determinism and nondeterminism in
complexity theory can easily be established in the unbounded case (Spaan,
Torenvliet, and van Emde Boas 1989, p. 188).

Given the difficulty o f the P versus NP problem, it is understandable that some will

propose novel and indirect approaches to the problem. Still, there is something ad hoc,

within this number o f steps then M halts and accepts also, else M halts and rejects." Of
course, the Halting problem is solvable if we impose time bounds— if we know how long
to wait, we let the computation unfold for that period of time and see whether the input
has been accepted or not. The Halting problem gets its teeth when we can not say a-
priori how long it will be before a machine accepts its input; that is, if we do not know
how long it will be before an machine accepts, we can never be sure i f we have waited
long enough before we say that the machine rejects. I think what Spaan, Torenvliet, and
van Emde Boas 1989 mean to say is that if M' accepts then it does so after some finite
amount o f time, otherwise we can rely on the fact that M is a fair nondeterministic
machine to wait out a divergent computation "without risking infinite computations"
(Spaan, Torenvliet, and van Emde Boas 1989, p. 192). But more important than the
technical details o f the proof, or even whether the proof flies, for that matter, is the fact
that Spaan, Torenvliet, and van Emde Boas have been motivated to start re-thinking long

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perhaps even desperate, about redefining a notion so that a problem that was once

contained in the theory of computational bleeds into the theory of recursive functions. Is

this progress or regress? Indeed, nondeterminism is a conservative assumption, and

hence, well-understood in the theory o f recursive functions. While it might be possible to

shed new light on nondeterminism in complexity theory by imposing the sort of

distinction that Spaan, Torenvliet, and van Emde Boas propose, it might also be the first

step toward a degenerating research program where a recalcitrant problem is explained

away by tinkering with a more basic assumption.

4.3 Moving beyond the Turing machine

Finally, there is talk of moving "beyond" the Turing machine. The idea here is to

view the P^NP conjecture as a theoretically roundabout way o f marking the real world

distinction between the problems which are tractable in an absolute sense and those

which are tractable when CPU time is sold by the second. That is, there are known

algorithms for solving all the problems in NP, but they typically involve an exhaustive

search of an exponential search space. Hence, they take a prohibitively long time to

perform.

There is discussion of exploiting physical analogues (e.g., quantum mechanical

systems or chaotic systems) in which the combinatorial explosion inherent in

nondeterministic algorithms is conveniently collapsed by the physical system. There is

even discussion o f a physical version o f Church's thesis relating the sense o f computable

to whatever it is that can actually be computed by a physical device. Unfortunately, none

standing definitions and equivalence results.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o f this has much to do with the original Church Turing thesis (at least according to some

o f those discussing the idea, see Pitowsky (1990)) and is thus unlikely to help us

reconcile our conflicting issues about nondeterminism. Our concern is not so much

whether a problem in NP can be solved quickly, but whether the underlying notion of

nondeterminism can be reconciled with our intuitions about algorithms.

O f course, we do well here to recognize the emergence o f intuitions about

nondeterminism in the physical sense. Indeed, it seems there is something to say about

the possibility o f using the nondeterminism inherent in a quantum mechanical system to

address the sense of nondeterminism inherent in the P versus NP problem. Unfortunately,

the physical sense o f nondeterminism and the theoretical sense o f nondeterminism seem

to be at odds. In fact, Pitowsky distinguishes between the physically computable and the

theoretically computable and goes on to talk about NP-complete problems which might

have physical polynomial time solutions even if it happens theoretically that P*NP

(Pitowsky 1990). The possibility seems likely (provided we figure out how to build a

quantum computer) since it is widely believed that P*NP. What would we say in such a

situation? What would it mean to say that a problem like SATISFIABILITY is

theoretically intractable if eventually happens that it is decidable in polynomial time by a

quantum computer? In such a situation, the physical sense o f nondeterminism would not

illuminate the theoretical sense, it would instead render it moot.

O f course, it is also possible that we will never build a quantum computer (maybe

P?tNP and there is no way around it) or perhaps we build a quantum computer and prove

that P=NP. In both these cases the relation between the physical and theoretical sense of

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism would be more obvious. In one case it would be clear that the theoretical

sense o f intractability is absolute, in the other case we'd find that quantum computing is

overkill. In the meantime, however, it is hard to see how to relate the physical and

theoretical intuitions about nondeterminism.

The idea of a nondeterministic Turing machine is rooted in a long tradition in

theoretical computer science and during the course o f that tradition several ideas about

nondeterminism have emerged. In particular, the nondeterministic Turing machine has

been used to think about algorithms, resource bounds and the classification of

mathematical problems. Although the tradition has implicitly established a presumption

o f continuity in both the historical and conceptual development o f nondeterminism, it

should be clear by now that such a presumption is ill-founded. The nondeterministic

Turing machine cannot be adduced as evidence for the Church Turing thesis, and at the

same time, be presented as a patently "unrealistic" model o f computation. We cannot

reconcile intuitions about machines with intuitions about inspired guessing.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IV. A Second Look at the Received History

0. Overview

In this chapter we will revisit the history presented in the last chapter. As we have

seen, there are a handful o f watershed papers in the development o f nondeterminism.

Unfortunately, none of these papers contain an explicit reference to the introduction of

the nondeterministic Turing machine, nor do they reveal a unified context in which we

can understand the theoretical motivations for nondeterminism. Our goal below is to

place the received history in a more critical light and thereby reinforce the philosophical

concerns we raised in the last chapter.

1. Introduction

We have argued that it is difficult to make philosophical sense o f the

nondeterministic Turing machine; now we will see that it is hard to make historical sense

of it as well. We begin where we left off in the last chapter by noting that the received

history never really pins down a date for the formal introduction o f the nondeterministic

Turing machine. There are vague allusions to the interplay between formal language

theory, automata theory and computation theory, but explicit references to the first

nondeterministic Turing machine are conspicuously absent. We get closer to an actual

date with Greibach's citation o f Evey's 1964 dissertation for the proof o f equivalence

between unbounded deterministic and nondeterministic Turing machines. In fact, Evey

himself, having taken some care with questions o f priority, claims his proof "appears to

be new simply because nondeterministic Turing machines have not been discussed"

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Evey L963, p. 2-71).1 Unfortunately, the received history is inadequate. For starters, it

pins down the wrong date for the introduction of the nondeterministic Turing machine.

But the problems run much deeper than just a quibble about dates. Without a firm sense

of when the nondeterministic Turing machine was introduced, we cannot understand why

it was introduced which makes it all too easy to overlook philosophical tensions.

To sort things out we must start anew. Contrary to the received view, the history

of the nondeterministic Turing machine really begins nearly thirty years before the Evey

dissertation with Turing's seminal 1936 work. There we find the theoretical discussion of

nondeterminism in Turing's so-called choice machines. Moreover, that discussion comes

at a crucial juncture in the argument for Turing-machine computability as an adequate

account o f effective computability. Unfortunately, Turing's discussion of choice

machines is also rather brief and it seems to have been overlooked or, perhaps, forgotten

by his immediate successors who focused exclusively on deterministic computation. The

notion of a nondeterministic machine does not surface again until 1959 with Rabin and

Scott's (re)introduction of nondeterministic automata. Although Rabin and Scott have the

same idea in mind, their motivation for considering nondeterminism was very different

from Turing's. Next, there is Kuroda's 1964 proof for the equivalence between type-1

grammars and the languages accepted by nondeterministic linear-bounded automata.

Kuroda's proof is important not only because it completes the work Chomsky began

relating formal grammars to automata, but also because on the received view, the

1 In fairness to Evey, we should note that he is not really interested in the Turing
machine perse; rather, his goal is to use the pushdown store to achieve greater

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterministic linear bounded automaton marks a confluence o f ideas concerning

computation, determinism and resource bounds.2 Finally, there is Hartmanis and Steams

(1965) and the subsequent work o f Cook and Karp wherein the connections between

determinism and resource bounds find their modem expression.

Our history o f nondeterminism is thus divided into four episodes. In the next

section we will look at Turing's work in the '30s and try to understand what he thought he

had achieved by introducing the choice machine. In §3 we will explain away the 20-odd

year absence o f the nondeterministic Turing machine before looking at Rabin and Scott's

work. We will also make note o f some independent developments in the Soviet Union. §4

will be devoted to a discussion of the theoretical climate of the early '60s and the

concerns that would ultimately lead to a theory o f computational complexity. We will

note the emergence o f conflicting intuitions in the early '60s as researchers were driven

by the desire to develop a realistic theory o f computing and, at the same time, were

"learning to think nondeterministically." Finally, in §5 we will look at Hartmanis and

Steam's seminal paper, which initiated a robust theory of complexity, and at the papers of

Cook and Karp, which together defined the theory's central methodological approach and

its most famous open problem.

In many respects, the history we describe here will resemble the received history

we discussed in the last chapter; we will recognize the same mix o f influences and we

will examine the same classic papers. There is, however, an important difference. Where

theoretical unification among abstract machines (and grammars).
2 Cf. (Hartmanis and Hunt 1973).

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the received history emphasizes continuity and a seamless flow of ideas, we will find

discontinuity and a variety o f conflicting intuitions.

2. Turing's Nondeterministic Turing Machines

In §2 o f his 1936 paper, Turing defines automatic machines and contrasts them

with so-called choice machines:

If at each stage the motion of a machine (in the sense o f § I) is completely
determined by the configuration, we shall call the machine an "automatic
machine" (or a-machine).

For some purposes we might use machines (choice machines or c-machines)
whose motion is only partially determined by the configuration ...When such a
machine reaches one of these ambiguous configurations, it cannot go on until
some arbitrary choice has been made by an external operator (Turing 1965a,
p.l 18, emphasis in the original).

Unlike an automatic machine, a choice machine needs the input of an operator to keep it

running. We might wonder whether this makes choice machines incomplete or defective

in some sense, but let us postpone that question and note in the meantime that the formal

distinction between a and c-machines is the same distinction we now mark with the terms

deterministic and nondeterministic. The choice here is what to do next given a particular

combination of state and input and so, mathematically speaking, we have the familiar

distinction between an automatic (i.e., deterministic) machine which is defined by a

transition function and a choice machine (i.e., nondeterministic) machine defined by a

transition relation. Moreover, the essential mathematical intuition we identified in

Chapter 3, that o f the nondeterministic machine's inspired guess, is also evident in

Turing's discussion o f choice machines insofar as we might think of the operator

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

knowing exactly what the machine needs to do next.

The choice machine does not appear again until §9 when Turing describes in a

footnote how an automatic machine can be constructed to do the work of a choice

machine. The problem is to construct a Turing machine to enumerate theorems in

Hilbert's first order logic. Although Turing never discusses the details, it is easy enough

to describe how a choice machine might work. For example, given an axiom as input (or

axioms, or perhaps other theorems) a choice machine can scan the input, determine

whether any o f the rules o f inference apply (a purely syntactic determination) and then

prompt the operator to choose among the appropriate rules. With the inference rules

"hard-coded" as subroutines in the machine's transition table, the machine takes the

operator input, jumps to the corresponding subroutine to apply the rule (another purely

syntactic task), and finally outputs the resulting theorem. With some careful

bookkeeping, the operator can continue to feed in axioms (and previous output) as input

and thereby enumerate first order theorems in almost any order he pleases. Clearly,

writing out the actual transition table for such a machine would involve some fairly

tedious detail, but there is nothing tricky here; the operator does the thinking and the

machine does the all the syntactic grunt work.

Turing's ultimate goal, however, is to describe an automatic machine to

enumerate theorems and at first it is not obvious how this might be done. Indeed, a

machine can determine which rules apply and it can apply them, but deciding which

particular rule to apply hardly seems mechanical—hence Turing's image o f an external

operator making all the decisions. So how do we get rid o f the operator? The answer is to

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

replace inspiration with exhaustion. Rather than hanging at some point in a derivation

waiting for an operator to choose a particular rule o f inference, an automatic machine

will draw every possible inference every time. The trick is to mechanize the bookkeeping

so the automatic machine will generate theorems systematically, outputting each and

every theorem without ever getting lost in an endless derivation. There are many ways to

do the bookkeeping. For example, starting with all the axioms printed (and suitably

delimited) on its tape, an automatic machine might scan the left-most axiom, determine

which rules apply, enter each o f the appropriate subroutines in some prescribed order

(where, as before, the inference rules have been hard-coded into the control o f the

machine), append the resulting theorems to the end of the tape all before moving onto the

next left-most axiom. Having applied each o f the appropriate inference rules once to all

the axioms the machine would start again with the left-most axiom and apply all the

appropriate rules twice all the while appending the results to the end of its tape. Left to its

own devices, the automatic machine will continue to grind through derivations o f ever

increasing length and thereby arrive (eventually) at every theorem that could be

discovered by an operator working with a choice machine.

It is remarkable that an automatic machine can do the work o f a choice machine,

even though an operator working with a choice machine can produce a potentially

infinite stock o f theorems in any order he pleases. Things work out this way only because

at any point in a derivation an operator can choose from at most finitely many rules of

inference; hence, there are only finitely many distinct derivations o f a given length. The

behavior o f the choice machine— that is, the sequence of decisions the operator makes—

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be systematically described. Turing exploits this fact by way o f a straightforward

arithmetization of choice sequences:

We can suppose that the choices are always choices between two possibilities.
Each proof will then be determined by a sequence o f choices ih iz, ..., tn (/, = 0 or
I, iz = 0 or 1,..., in = 0 or I), and hence the number 2 " + i\2nA + i2l n'2 + ... + i„
completely determines the proof. The automatic machine carries out successively
proof I, proof 2, proof3 ... (Turing 1965a, p. 138).3

Here, finally, is the smoking gun we have been looking for. Although brief,

Turing's three sentence discussion of choice machines and automatic machines provides

just enough detail to construct a full blown proof for the equivalence between

deterministic and nondeterministic Turing machines. Hence, credit for the

nondeterministic Turing machine and the proof of its equivalence to the deterministic

machine should be given to Turing and not, for example, to Evey nor anyone else

working in the late '50s or early '60s. It is odd that the paper that first introduced the

3 There are few technical points to make here: First, there is no loss in generality in
restricting our attention to choices between two possibilities. Suppose we are given a
machine that must choose among n possibilities, c l5 c2, ..., c„ (where n>2), at some point
in its computation. A choice among n possibilities can be simulated by series of choices
between two possibilities in the following way: We introduce new choices als a2, ..., a„.2

("a" for "all the other choices") to the original set o f choices cb c2, ..., c„. Rather than
choose among all n possibilities at once, the machine first chooses between C[and at,
then (if necessary) between c2 and a2, ..., then (if necessary) between cn.i and c„ (see
Hopcroft (1979, pp. 92-93) for their proof o f the Chomsky Normal Form theorem).

Second, there is a subtlety in Turing's coding scheme. At first blush, it might
seem that Turing is simply using binary numerals read as strings from left to right to
represent a sequence o f choices. This is almost correct, but we must remember that
leading zeroes are significant. Hence, 2" +■ /12"*1 + h T '1 + in gives a decimal expression
for a binary string o f length n allowing for the possibility that we might be coding a
string with leading 0 's (or perhaps all 0 's).

Finally, there is an unmistakable family resemblance between Turing's '36 proof
and the equivalence proof given in (Hopcroft and Ullman 1979, p.164).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Turing machine is the last place people think to look for the nondeterministic Turing

machine, but it is not too surprising given that Turing himself misdirects the reader's

attention. In fact, immediately after introducing the choice machine in §2 Turing

announces, "In this paper I deal only with automatic machines" (Turing 1965a, p .118).

Given that disclaimer, the reader is likely to forget about choice machines altogether

unless he reads the appendix to Computable Numbers. There, after reminding the reader

about the footnote in §9, Turing makes a second appeal to choice machines in his proof

o f the equivalence between Church's X-definable terms and his own computable

sequences. But once again, it is easy to overlook Turing's mention of the choice machine;

the reference is so brief as to appear incidental and it comes at a point when Turing

seems to be wrestling with foundational questions about his entire approach. And thus we

come to a more difficult question: if it is so easy to overlook the choice machine in

Turing's analysis of the computable numbers why did he bother with it at all?

The answer is not straightforward and it requires that we disentangle several

issues. To begin, let us consider the context in which §9 and the appendix were written.

Recall that for his proof of the unsolvability o f the Entscheidungsproblem to work,

Turing needs a problem unsolvable by any systematic means; nothing is gained by

proposing a notion o f computable that happens to be just narrow enough to preclude a

solution to the Entscheidungsproblem. So, how narrow is too narrow? Or, to put the

question in its more familiar form, Is Turing's notion o f computable wide enough?

Turing himself poses the question in §9, "The extent o f the computable numbers," but

despairs, "All arguments which can be given are bound to be, fundamentally, appeals to

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

intuition, and for this reason rather unsatisfactory mathematically" (Turing 1965a, p. 135).

It is well known, however, that the appendix to Computable Numbers was added after

Turing became aware o f Church's work and its application to the Entscheidungsproblem.

Suddenly there were three formal counterparts to the informal notion o f algorithm, two of

which (thanks to Kleene's 1935 work on ^-definability and the general recursive

functions) were provably equivalent. Church's work raised the mathematical possibility

that Turing's notion of computable might prove to be too narrow. The appendix is more

than just a nod to priority; the demonstration that any number (or function) that is X-

definable is computable, and conversely, is crucial because it establishes Turing's notion

of computable as a legitimate alternative to the two formalisms described by Church

(1965).

Obviously, the demonstrations o f extensional equivalence in §9 and the appendix

dovetail nicely with arguments that the notion of computable is sufficiently wide. The

fact that several independent accounts can be shown mathematically to pick out the same

class o f functions is compelling evidence that we have identified a robust notion of

computable. In this light it is tempting to read the arguments o f §9 and the appendix as

more of the same kind of evidence—another two results in a long list o f equivalences.

Unfortunately, if we think only about equivalence we come no closer to understanding

the role o f the choice machine in Turing's argument. In fact, in the context o f an

equivalence theorem, Turing's discussion o f choice machines seems hopelessly far

removed from the end-result. Turing introduces the choice machine to enumerate

theorems in Hilbert's logic, then argues that such a machine can be replaced by an

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

automatic machine, all to establish a result that is, ultimately, just a lemma needed in the

proof that any number defined by a Hilbert-style first-order theory is computable and

vice versa. Not only are Turing's references to the choice machine deeply buried, but

those willing to follow this long chain of argument back to its beginnings are likely to

regard the choice machine as an inessential, heuristic step in a more important

equivalence proof.

To understand Turing's appeal to the choice machine, we must reconsider the role

o f equivalence results. While such results are significant in their own right, they are not

at the center of Turing's attention. In fact, the arguments for the extent o f the computable

numbers come in three kinds. There is the "direct appeal to intuition," the celebrated

analysis o f man-as-computer working with a pen and paper. And there is an argument by

way of example as Turing points out "large classes o f numbers which are computable."

The argument for extensional equivalence is actually sandwiched between these two

other arguments. Moreover, it comes with an important qualification: the equivalence

proof is given because "the new definition has a greater intuitive appeal" (Turing 1965a,

p. 135). Although Turing's remark is made parenthetically, it suggests that his goal is not

an equivalence result per se, but rather to show how a given formalism can yield quite

naturally to a computational analysis. O f course a formal proof o f equivalence cannot

establish one definition as more natural or more intuitive than another, but there is room

for such subjective judgments when we consider the constructions that make up an

equivalence proof—and it is here that the choice machine fits into Turing's argument.

The more difficult implication in the equivalence proof o f §9 is showing that any

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number that is definable is computable. (Turing sketches the proof for the converse

implication in a single sentence.) Turing's sense o f definable is peculiar; rather than give

first-order definitions of numbers directly, Turing focuses on the binary sequences that

represent numbers, in particular, those sequences that can be described by a finite

conjunction o f first order formulae. The idea is that a sequence will be definable when it

can be described bitwise, so to speak. More formally, Turing introduces a predicate G J f)

for each sequence a , which is read as "the x-th figure of a is 1." { - G f x) is read as "The

x-th figure o f a is 0.") Sequences are definable in Turing's sense only if, for each n e N,

there is a provable formula asserting that the nlh bit o f the sequence is I or there is a

provable formula asserting that the nlh bit is 0 (but not both). So, given a definable

sequence a, we construct a machine to proceed digit by digit; to compute the j lh digit the

machine enumerates theorems until it finds a formula asserting Ga(j), in which case it

prints a "I," or it finds a formula asserting~Ga(j), in which case it prints a "0" before

moving to the next (j-H)Ih digit. By hypothesis, exactly one o f the two formulae is

provable and hence the machine always prints either a " 1" or a "0 " for each digit in the

sequence. There is nothing surprising here: the machine works exactly as one would

expect given Turing's sense o f definition. But we have yet to see a natural, computational

account o f definable. Indeed, the real question is whether Turing's computational analysis

Is itself intuitively appealing; it is not enough to piggyback an account o f computable

onto an admittedly peculiar sense o f definition. Whatever intuitive appeal there is in

Turing's proof rests with the operation of the machine, especially when it comes to

enumerating theorems. Unfortunately, Turing does not specify the automatic machine.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Instead, he claims that "The author has found a description o f such a machine" (Turing

1965a, p. 138). He does, however, preface that remark: "It is most natural to construct

first a choice machine (§2) to do this. But it is then easy to construct the required

automatic machine" (Turing 1965a, p. 138). Again, some might claim here that the choice

machine is heuristic; as Turing himself goes on to say, the goal is to go from choice

machine to automatic machine and the choice machine helps with this step. Intuitively

speaking, however, our interests run in the opposite direction. The choice machine

grounds the automatic machine. Indeed, there is nothing natural or intuitive about an

automatic machine spitting out theorems, but there is something familiar about the

operation of a choice machine: the combination o f operator and machine produces

theorems in exactly the same way a mathematician working alone would. Even if we

require the automatic machine for a formal equivalence proof, the choice machine makes

the analysis intuitively compelling. The progression from choice machine to automatic

machine shows off the computational aspects of proving theorems more clearly, and

more naturally, than would be possible if Turing had jumped directly to the description o f

an automatic machine. In this sense, the choice machine is more than heuristic; it gives us

reason to believe that the proof, and indeed the entire analysis, is on the right track.

Similar remarks apply to Turing's use of choice machines in the appendix. As we

saw above, the formal equivalence between the computable and the ^.-definable numbers

is crucial to Turing's argument, but it is also significant that the choice machine o f §9 can

do the work o f conversion in the ^-calculus. There is, o f course, a deliberate and obvious

similarity between derivation in a formal system and conversion in the X-calculus.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Nevertheless, it is not clear that either will yield to Turing's computational analysis; even

worse, it would be disconcerting if Turing could account for one formalism but not the

other. The fact that the choice machine naturally relates both formalisms to Turing's

notion o f computable is, again, intuitively compelling. As we would hope, similar tasks

are performed by similar machines.

The emphasis on intuitively appealing proofs o f equivalence is clear not only in

Turing's 1936 work but also in his (1937). In that paper, he gives a more detailed

demonstration that every ^.-definable function is computable, as well as a proof that

every computable function is general recursive; these results together with the Kleene's

1935 proof that a function is ^.-definable if and only if it is recursive established the

equivalence between all three definitions. It might seem that Turing's work here is

superfluous given that he had already sketched a proof for the equivalence o f computable

and ^.-definable sequences in the appendix to the 1936 paper, but he goes on to say in the

1937 paper,

The identification of'effectively calculable' functions with computable functions
is possibly more convincing than an identification with the ^.-definable or general
recursive functions (Turing 1937, p .153).

Davis (1982) gives us good reason to believe that Turing was indeed correct when

he suggested that his account of'effectively calculable' might be more convincing.

Kleene echoes similar sentiments, "[f]or rendering the identification with effective

calculability the most plausible— indeed, I believe compelling— Turing computability

has the advantage o f aiming directly at the goal as is clear (and as Turing modestly

suggested in 1937 p .153)" (Kleene 1981, p. 61). In fact, it is well documented that Godel

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

found Turing's work on effective computability far more compelling than the work done

by Church or Kleene. Davis points out that Godel (and to some extent, Post) believed that

an adequate analysis o f effective procedure would begin with the familiar intuitions about

algorithms and only then work toward a particular formal definition. Turing proceeds in

exactly that way. For example, the 1936 paper begins, famously, with Turing's

description of man-as-computer, where the extraneous details are stripped away until

Turing arrives at the essential operations that define the Turing machine. Likewise, in his

1937 proof that every k-definable function is computable. Turing first describes

constituent machines which perform mundane tasks on k-terms such as marking symbols,

comparing symbols, matching parentheses, swapping symbols and searching a string for

a given symbol. These machines are then composed in an entirely straightforward

manner to produce a machine that enumerates all the possible immediate conversions

from a given k-term (i.e., the machine either reduces or expands the k-term), and hence

the entire process o f k-conversion is shown to be mechanical. The proof proceeds by way

of a piece-meal analysis, which starts at a familiar, intuitive level and works its way to a

more formal result.

Turing's progression from familiar to formal is best exemplified by the choice

machine. Let us think about deduction in very general terms: particular formal systems

are characterized by the axioms they admit, or the rules of inference they employ, while

deduction more generally can be characterized as a series o f choices. The difference

between deriving one theorem rather than another is, at the most basic level, a matter of

deciding to apply one rule rather than another. Turing presents the choice machine to

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

make this familiar aspect o f theorem proving mechanical. Indeed, as Wang points out,

the choice machine corresponds to "what mathematicians in fact do" (Wang 1974, p. 84).

That is to say, the choice machine allows Turing's computational analysis o f two

different formal systems to start off on the right intuitive foot. Turing moves from the

familiar to the formal. By contrast, Church and Kleene began with a formal definition,

which was only later identified with the class o f effectively computable functions. This is

not to say that the work of Church and Kleene was any less important but, rather, to

underscore Turing's emphasis on intuitively compelling accounts of computable.4

4 But we should mention in passing that, despite their mathematical significance,
neither Kleene's account o f the ^.-definable terms nor Church's original appeal to the
general recursive function hold much intuitive appeal as accounts o f "effectively
calculable." For instance, Kleene identifies algorithms for computation with a process o f
repeated reduction, which starts with the term representing the function as it is applied to
a numeral and ends with a unique normal form for the terms that represent numerals.
While Kleene's approach makes for a perfectly reasonable algorithm, it also makes for
some hairy function terms. In fact, Kleene reports that coming up with a term to compute
the predecessor function—a function trivially computed by a Turing machine—was
something o f a discovery (see Kleene 1981, pp. 56-57). Moreover, as pointed out by
Davis (1982), even Godel had a hard time with Kleene's 1936 proof of the equivalence
between the general recursive and ^.-definable functions. As for Church's appeal to the
general recursive functions, although the primitive recursive functions capture intuitions
about effectiveness in a rather obvious way, Ackermann's discovery o f an intuitively
computable function that is not primitive recursive makes formal definitions o f general
recursive functions decidedly less perspicuous. Suddenly recursion became a business o f
substitution o f the most general kind. We might "see" addition and multiplication in the
set of equations:

But it is hard to see minimization, F* anywhere in the recursion equations given in
(Church 1965, p.97) for a two-valued recursive function F(x,y) (minimizing on y):

+(x, 0)=0, +(x,S(y))=S(+(x,y)), *(x,0)=0, *(x,S(y))=+(x, *(x,y)).

iz(l» 2) = 2 , g2(x, 1) = i2(f2(x, 1), 2),
hi(S(x), y) = x, j 2(I , y) = y,

i2(S(x), 2) = I,
i2(x, S(S(y))) = 3 ,

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although we just have taken a somewhat lengthy detour through the equivalence

results o f the mid 1930s, our goal is not to embark on the intellectual history o f the

Church Turing thesis. Rather, by looking seriously at the way Turing presents these

results, we might understand his rather brief references to the choice machine. Contrary

to the recent work o f Spaan, Torenvliet, and van Emde Boas (1989) it does not seem that

Turing regarded choice machines "an aberration to the notion o f computability." The fact

that such machines depend on the input o f an external operator does not make them

defective; it makes their operation more familiar and, hence, more natural. Moreover,

Turing's emphasis on naturalness proves to be important both historically and

conceptually. In summary, Turing presents the choice machine as a natural mechanical

analogue for reasoning in formal systems. The behavior o f the mathematician is clearly

reflected in the workings of the choice machine, which makes Turing's computational

analysis all the more compelling.

2. Rabin and Scott's Nondeterministic Automata

In the last chapter we argued that the formal notion o f a nondeterministic

algorithm is far removed from the intuitive notion. Now we can appreciate the irony in

that development: initially the choice machine was presented as an intuitive touchstone,

but now it is the source o f some very counter-intuitive results. What's more, this

conceptual break reflects a historical discontinuity as well. Although our notion o f

where the functional variables f2 and f, denote the functions F and F* respectively and 2

hifgifx, y), x) = j 2(g2(x, y), y),
jiCSfx), y) = x, g2(x,s(y)) = i2(f2(x, S(y)),

f ,(x)= h 2(l ,x) ,
g2(x, y)), i2(x, I) = 3,

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism can be found fully articulated in Turing's 1936 discussion of choice

machines, and although that discussion is motivated by the very concerns for naturalness

that made Turing's work so influential, the idea of a choice machine completely

disappears for some twenty years. It is not until Rabin and Scott's 1959 article that the

idea o f a nondeterministic machine resurfaces. We can only speculate about the causes o f

this historical gap. As we indicated above, Turing's mention of the choice machine is

brief, and he does a good job deflecting the reader from what little discussion there is. It

is also possible that the choice machine was ignored as a theoretical oddity in the push to

build machines that actually do something. Whatever the reasons, by 1959, both the

theoretical and practical state o f the art in computing had changed dramatically; Rabin

and Scott's nondeterministic automata addressed concerns entirely different from those

that motivated Turing.

By 1959, the Turing machine was "widely considered to be the abstract prototype

o f digital computers" (Rabin and Scott 1959, p. 114). Recall from Chapter 3 that, at

roughly the same time, Rogers described the theory o f recursive functions as an

investigation into what might be accomplished by a digital computer working with

"explicit deterministic programs of instructions" (Rogers 1969, p. 130). The question that

had plagued Godel, whether an adequate formal account o f recursion was even possible,

had lost its urgency by 1959. In fact, Rabin and Scott found themselves dealing with an

altogether contrary worry that the Turing machine might be too general a model o f

computation. The ability to compute any recursive function was overkill for most

and 3 are abbreviations for S(l) and S(S(1)) respectively.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

practical applications. Hence Rabin and Scott focused their attention on the finite

automaton as a more restricted model o f computation.

A finite automaton is, essentially, a Turing machine without the tape.5 The

automaton is finite in the sense o f having only finitely many internal states, which must

be used for both memory and control. In this way, the potentially infinite number of

combinations possible in a Turing machine between state and input are avoided and, it

was hoped, "a better approximation to the idea o f a physical machine" would be

achieved (Rabin and Scott 1959, p.l 14).6 But the theory of finite automata was also

pursued for its own sake, and toward that end Rabin and Scott introduced

nondeterminism as a possible, and they claimed, novel generalization of the finite

automaton. Like the nondeterministic Turing machine, a nondeterministic automaton is

described by a transition relation rather than a transition function; at some (perhaps

every) step in its computation a nondeterministic automaton will assume one state among

5 Actually, Rabin and Scott originally imagined finite automata as "defining sets of
tapes." The image was o f an automaton scanning a finite, segmented input tape one
square at a time, and upon reaching the end o f the tape (after a single pass) either
accepting or rejecting the input. The set o f tapes thus accepted is the set o f tapes
"defined" by the automaton. These days we talk about the language accepted by a
machine rather than the tapes defined by it, but the idea is the same. (In their formal
exposition, the word tape is an abbreviation for finite sequence ofsymbols .) There is,
however, a surprising result that hangs on the tape imagery. Rabin and Scott not only
considered what could be decided after a single, one-way pass over an input tape (the so-
called one-way automaton), but they also considered what could be decided by a machine
allowed to run back and forth over its input (the so-called two-way automaton). It can be
proved that two-way automata are no more powerful than one-way automata.

6 But not everyone thought this was a good idea; see, e.g., McCarthy (1962) who quips
that approximating the finiteness o f the IBM mainframe computer is hardly practical (or
usefUl). Rabin and Scott are more sanguine: "An actual existing machine may have
billions o f such internal states, but the number is not important from the theoretical

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a handful of possible next states. How, exactly, this happens is left to the reader: "We are

not concerned with how the machine is built but with what it can do" (Rabin and Scott

1959, p. 115). All that matters is that some sequence of state-transitions leads to an

accepting state; if no such sequence is possible, the input is rejected. Moreover, as with

Turing machines, it can be proved that the nondeterministic automata are no more

powerful than deterministic automata; any language decided by a nondeterministic

automaton can be decided by a deterministic automaton.

As before, we must ask, why bother with a generalization that proves to be no

more general? Unlike Turing, who introduces the choice machine to buttress the intuitive

appeal o f his account, Rabin and Scott are motivated by purely pragmatic concerns. For

them nondeterminism yields a useful "versatility," which can be "utilized for showing

quickly that certain sets are definable by automata" (Rabin and Scott 1959, p. 115). Their

emphasis is on shorter proofs for well known results. Their proof of equivalence between

deterministic and nondeterministic automata is likewise unrevealing from a philosophical

perspective. While we can see something computational in the exhaustive, deterministic

simulation of a nondeterministic Turing machine, such intuitions are harder to find in the

workings of an equivalent deterministic automaton. Instead, there is a more mathematical

(and less intuitive) construction that considers the power set o f the automaton’s set of

states. Given a nondeterministic automaton the idea is to consider all the states that might

be reached from a given combination o f state and input. This set o f states essentially

becomes a label for a single new state in the constructed deterministic automaton. The

standpoint—only the fact that it is finite" (Rabin and Scott 1959, p. 115).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterministic transition from a given combination o f state and input which leads to

any one o f a number o f states now leads to a single state and thus the transition relation

o f the nondeterministic automaton becomes a transition function for a deterministic

automaton .7 We might say that the deterministic automaton "keeps track in its finite

control o f all the states that the NFA [i.e., nondeterministic finite automaton] could be in

after reading the same input" but it is not clear that the sense o f simulation here is the

same as that o f a deterministic Turing machine simulating a nondeterministic machine.

Indeed, in exactly the same way that we construct a universal machine, we can construct

a single deterministic machine that takes as input the description o f any nondeterministic

machine and its input. Given this input, the deterministic machine is then able to unfold

the computation tree the nondeterministic machine. The sense of simulation is thus quite

general and is inherent in the workings o f a single all-purpose machine. We might think

o f such a universal machine in the same way that we think of emulation software that

allows a Mac to run various programs written for a PC. The PC software executes as if it

were running on a Windows machine. Although there is an algorithm for constructing a

deterministic automaton that accepts the language of a given nondeterministic automaton,

there is no universal automaton in the sense we described above. The relationship

between the given nondeterministic automaton and the deterministic is inherent in the

7 More formally, if Q is the set o f states for the nondeterministic automaton, then 2e,
the powerset o f Q, is the set o f states for the deterministic automaton. Likewise, if 8 is the
nondeterministic transition relation from QxL to O, then we define a deterministic
transition function S' from 2ex£ to 2Q as follows,

S'dqi, q2>—>qj. <r) = fai, q2,.», q j iff 5({q„ q2,..., q,}, cr) c {qt, q2,.-,qk}-

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

particular construction and the resulting deterministic device cannot "simulate" any other

automaton. Moreover, except for some tendentious labeling, the two automata are

distinct; they accept the same language, but its is hard to see the workings o f one in the

behavior o f the other.

Rabin and Scott's 1959 paper is consistently cited as having first introduced the

nondeterministic automaton (cf. Greibach 1981, p. 18). It is thus tempting to assume that

Rabin and Scott present the first general discussion o f nondeterminism. But this is not the

case; their discussion is neither first nor general. In fact, for Rabin and Scott

nondeterminism is simply a convenient and conservative construction. Where Davis has

described Turing's 1936 paper as "a remarkable piece o f applied philosophy"—a

characterization that applies particularly well to Turing's discussion of choice

machines— Rabin and Scott's discussion of nondeterminism is more applied mathematics

than applied philosophy (Davis, 1982, p. 14).

Although it was an influential paper, Rabin and Scott's work leaves little room for

philosophical discussion. I f there is a philosophical moral to be drawn at all, it is to

recognize the conspicuous lack of philosophy in the theoretical work o f the late 1950s—a

theory that began some twenty years earlier amid pressing philosophical concerns. There

was, however, another development in 1959 worth noting. As mentioned by Sipser

(1992), and discussed more fully by Trakhtenbrot (1984), Russian theoreticians were

worried aboutperebor, or brute-force algorithms. In particular, Yablonskii (1959)

discussed problems that could be solved algorithmically in principal but which required

prohibitive computational resources in practice.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

At present there is an extensive field o f problems in cybernetics where the
existence o f certain objects or facts may be established quite trivially and, within
the limits o f the classical definition o f algorithms, completely effectively, yet a
solution is, in practice, often impossible because o f its cumbersome nature ... It is
here that the necessity o f making the classical definition of an algorithm more
precise naturally arises. It is to be expected that this will, to a greater extent than
at present, take into account the peculiarities o f certain classes of problems, and
may, possibly, lead to such developments in the concept o f algorithm that
different types o f algorithms will not be comparable (Yablonskii (1959) p.401;
also quoted in Sipser (1992)).

In many respects, the Russian notion o f a perebor algorithm anticipates the class

NP. Recall (Chapter 3) that problems in NP are those for which a putative solution can be

discovered nondeterministically and verified in polynomial time. Just as Yablonskii

describes perebor problems, problems in NP have trivial solutions in the sense that a

machine could work them out, but the number o f possible solutions that must be tried is

vast. "Algorithms" for NP-problems run in polynomial time only because we imagine a

nondeterministic search to take the place of an exhaustive search of an exponential

solution space. In this sense, NP is, oddly enough, a way of classifying those problems

for which we have no polynomial-time solution. The algorithms we actually have for

such problems are perebor algorithms— inefficient, brute-force searches.

Yablonskii's work is remarkable for two reasons: First, from a historical point of

view it is worth noting his anticipation o f a class of problems that was not fully

articulated in the West until 1972.8 Second, and more important from a philosophical

8 However, Yablonskii himself might not be too happy with the identification of
problems solvable (only) by perebor with the complexity theorist's class o f NP-problems.
In fact, Trakhtenbrot (1984) reports that Yablonskii "distrusted the role that
computational complexity and algorithm complexity could play in the perebor subject."
Apparently, Yablonskii was something of a constructivist and he did not see how

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perspective, is the idea that the classical notion o f an algorithm might not adequately

characterize the problems solvable by brute-force searches. If we allow ourselves to

identify perebor searches with the "guessing" implicit in nondeterministic computation,

Yablonskii's suggestion that we might be dealing with fundamentally different kinds of

algorithm leaves us in an awkward position with respect to the proven equivalence

between (unbounded) deterministic and nondeterministic Turing machines. How can

incomparable notions o f an algorithm be proven equivalent? Does such an equivalence

really support the Church Turing thesis? These questions underscore the concerns raised

in Chapter 3, only now our worries are more general. Questions about the equivalence of

deterministic and nondeterministic computation need not be tied to a particular open

problem in complexity theory, but extend to the very notion o f a nondeterministic

algorithm. We shall return to these questions in the next chapter.

3.1959-1965 and Kuroda's nondeterministic linear-bounded automaton

Trakhtenbrot (1984) recalls that Russian work on complexity theory proceeded

"independently and in parallel" to the work going on in the West in the early 1960s. The

fact that such work was independent, together with the fact that the Russian theoretical

community itself was bitterly divided over Yablonskii's "proof' that certain perebor

diagonalization—and, by extension, a good deal o f complexity theory—could apply to
the solution to combinatorial problems.

Yablonskii's mistrust o f complexity theory notwithstanding, his assertion that perebor
might be unavoidable resonates with the our understanding o f the P versus NP problem.
In fact, when we address that problem we are asking asks whether some problems are
inherently difficult (i.e., the exhaustive exponential search is unavoidable) or whether we
have simply not yet discovered an efficient way o f solving them. Yablonskii’s assertion
about perebor amounts to an assertion that P^NP.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

algorithms were unavoidable, suggests that worries about incomparable algorithms might

not have met with a wide audience outside the Soviet Union. What is more certain is that

nowhere on the bibliographic trail to the landmark papers o f Cook (1971) and Karp

(1972) is there any mention of the perebor conjecture.

In the early-to-mid 1960s Western theoretical research took on a more pragmatic

slant. Rabin and Scott's motivation "to give a better approximation to a physical

machine" would find expression in many other influential papers.9 For example, Yamada

stated, "In using digital computers, it is important to know the time required to compute a

given function"(1962, p.754). As a start to such a theory, Yamada introduced the notion

o f real-time computation by way of a (restricted) Turing machine as one attempt at "a

mathematical model for digital computers which is more realistic in particular aspects."

Likewise, in their seminal 1965 work Hartmanis and Steams chose a multi-tape Turing

machine as their model o f computation because "it closely resembles the operation of a

present day computer"(p. 287). The time-bounded, deterministic Turing machine was the

model o f choice to bridge the gap between the theoretical and the practical. The intuitive

notion o f a time-step found a natural analog in the basic operations o f a Turing machine

(e.g., one transition between states = one unit of time), and the well-established

9 Obviously, a theory is a theory about something and, in the case o f theoretical
computer science, one would expect the work to apply to real computers. It does not
follow, however, that the researchers o f the early 1960s were simply paying lip-service to
a theoretical cliche. Quite the contrary, complexity theory had yet to establish itself at the
time and it was important to make the potential real-world payoff clear. Contrast that
situation with the present situation where complexity theorists whole-heartedly admit that
their theory is premised, in part, on unrealistic models o f computation and often pursued
for its own sake (cf. §2, Chapter 3).

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

robustness o f the model itself provided a secure foundation for a general theory of

computational complexity (i.e. a theory that is sufficiently invariant with respect to the

model o f computation). Cobham (1964) used the time-bounded Turing machine to point

out the wide range of functions that can be computed in polynomial time and by 1965 the

identification o f the polynomial time algorithms with the class of tractable algorithms

was made explicitly by Edmonds (1965).

It is not surprising that the nondeterministic Turing machine is conspicuously

absent from the computer science of the early sixties. Given the theoretical desiderata for

a model o f real-world computers and a characterization o f tractable algorithms, it would

have made little sense to consider nondeterministic computation. A digital computer is

characterized by a predicable flow of control, and from this point o f view, a

nondeterministic Turing machine is more apt to be seen as a model o f a malfunctioning

computer than a useful abstraction.

Still, there were theoretical applications somewhat removed from the computer

science of the day where nondeterminism proved to be an interesting generalization.

Recall that in 1959 Chomsky introduced his hierarchy relating formal grammars and

automata. At each level of the hierarchy the question naturally arises whether allowing

nondeterministic automata will affect the class o f languages accepted. Rabin and Scott's

1959 equivalence proof showed that the class o f languages accepted at the bottom o f the

hierarchy (i.e., the type-3 languages) is the same whether we consider deterministic or

nondeterministic finite automata. It was also well known that the class o f languages

accepted at the top o f the hierarchy (i.e., the type- 0 languages) is unaffected if we allow

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterministic Turing machines rather than deterministic ones. 10 In the middle o f the

hierarchy, however, determinism makes a difference. Although it was a routine matter to

show that the class o f languages accepted by deterministic pushdown automata is

properly contained in the class of all context-free languages (i.e. the type- 2 languages),

Greibach recalls that in 1963 it was "an interesting open question whether [linear-

bounded automata] corresponded to Type I grammars as [pushdown automata] to Type 2

grammars" (Greibach 1981, P.24).

In 1964 Kuroda introduced the nondeterministic linear-bounded automata—

10 Common knowledge or not, it is still difficult to find explicit references to an
original equivalence proof. For instance, Kuroda (1964) makes an apparent reference to
the equivalence between the unrestricted grammars (type-0) and Turing machines to
which he refers to as "Theorem 0.3." He remarks, "It is easy to see that Landweber's
proof of Theorem 0.3 does not depend on the determinacy o f the automaton" (Kuroda
L964, p.209). Here it seems we have found a reference, albeit elliptical, to an equivalence
proof. There is, however, no such proof in (Landweber 1963). I am certain Kuroda meant
to refer to Landweber's proof that every language accepted by a LBA is context sensitive,
which Kuroda had earlier labeled as "Theorem 0.4." It would be a completely trivial typo
except for the fact that Kuroda goes on to say ," and Theorem 4 remains valid, if we
understand, under our convention, the phrase ‘linear-bounded automaton’ as meaning
‘nondeterministic linear-bounded automaton’." At first glance, it seems that Kuroda is
talking about the determinacy of both Turing machines and LBA's—even if that isn't
really the case.
There is room for a more subtle obfuscation in Greibach's citation o f Evey's 1963 proof

o f the equivalence between (unbounded) deterministic and nondeterministic acceptors. I
suppose this reference would be robust if we were to distinguish between Turing
machines as transducers and Turing machines as acceptors. Strictly speaking, the choice
machines Turing describes compute functions (where, e.g., f(l)= the first theorem, f(2)=
the second theorem, etc.), and hence they are transducers. Evey, on the other hand,
describes machines that accept or reject their input. In this light, there are two proofs to
consider and perhaps credit is due to Turing for his transducers and to Evey for his
acceptors. But it is just as easy to view acceptors as transducers that compute
characteristic functions. So even if, strictly speaking, Turing and Evey describe different
machines, it is hard to view their discussions as (conceptually) independent with respect
to questions about nondeterminism per se.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

essentially a nondeterministic Turing machine where the available work tape is strictly

limited by the length o f the input—and proved that every context-sensitive language is

accepted by some nondeterministic linear-bounded automaton. This result, together with

Landweber's proof that any language accepted by a linear-bounded automaton11 is

context-sensitive, establishes the equivalence between the Type-1 languages and

nondeterministic linear-bounded automata. Kuroda's work is significant for several

reasons. It completes the Chomsky hierarchy and, as mentioned in the last chapter, it

marks a confluence of ideas; questions about computation, formal language theory and

resource bounds can all be tied, both historically and conceptually, to questions about the

nondeterministic linear-bounded automaton. From our present point o f view, however,

the most remarkable aspect o f Kuroda's work is its seemingly contradictory legacy

regarding nondeterminism. On one hand, Kuroda's work is celebrated as a first step

toward a more thorough understanding of nondeterminism. For example, reflecting on

the effort that went into establishing the correspondence between the Type-1 grammars

and the linear-bounded automata Greibach reports,

11 Notice there is no reference to the determinacy of the automaton. In fact, following
Myhill's original discussion (I960), Landweber's LBA's were deterministic. But as
Kuroda points out (cf. note 13), there is no loss o f generality here. The main idea in
Landweber's proof is to specify productions that mimic the behavior o f an accepting
automaton "in reverse." In other words, we construct a grammar that will generate strings
representing complete configurations in an accepting sequence o f transitions in an LBA
starting with the final accepting configuration. We introduce nonterminal symbols to
record the state and the tape alphabet, and the productions are defined in a
straightforward way from the machine's transition table. With respect to the grammar, it
makes no difference whether a string on the left side o f the production leads to a unique
string on the right.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

With hindsight, it is hard to see why this was a difficult problem at all. Part o f the
reason was that we were not really used to nondeterministic machines—to
thinking nondeterministically—and Myhill's paper defined only deterministic
LBA's (Greibach 1981, p.24).

Presumably, Kuroda's work helped people "think nondeterministically." On the other

hand, Kuroda posed two questions in 1964: first, are the context sensitive languages

closed under complementation? and second, are nondeterministic linear-bounded

automata more powerful than deterministic linear-bounded automata? Although the first

question was, at long last, answered positively by Immerman (1988) (the second remains

open), the problems proved to be so difficult in the intervening years that in 1974

Hartmanis and Hunt lamented "our inability to answer them indicates that we have not

yet understood the nature o f nondeterministic computation" (Hartmanis and Hunt 1973,

p.3). Kuroda's 1964 work was a mixed blessing; whatever initial promise there was after

the completion of the Chomsky hierarchy must have faded quickly when it became clear

just how difficult it would be to think nondeterministically.

It is also strange that Kuroda (1964) figures so prominently in so many

discussions o f nondeterminism. This is not to deny Kuroda credit for introducing the

nondeterministic linear-bounded automaton, nor do I mean to overlook the influence o f

the questions he posed on subsequent research, but when we look at what Kuroda

actually said in 1964 we find that his discussion o f nondeterminism is quite brief. Having

devoted a full paragraph to the formal definition of a deterministic linear-bounded

automaton, Kuroda needs only a single sentence to define the nondeterministic linear-

bounded automaton as one where the transition function is multi-valued. There is also a

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perfunctory remark that on a given input, nondeterministic computation can lead to both

accepting and rejecting states. 11 But there is none o f the exposition one might expect

from a paper in which the central result depends on the introduction of a nondeterministic

device. In fact, there is no mention of determinacy at all in Kuroda's proof. Instead his

efforts are directed toward showing a normal form theorem for context-sensitive

grammars in which no string o f length greater than 2 appears in any of the productions

and that such grammars are "length preserving" and "linear-bounded" in the sense that in

any production, <p-»v|/, not involving the start symbol, the lengths of 9 and 9 are equal,

and that if S is the start symbol then if S-+EF then E=S. Kuroda claims, "It follows

immediately from these lemmas that for any context-sensitive language there exists a

linear-bounded automaton which generates it" (Kuroda 1964, p.214).13 Immediacy is in

the eye o f the beholder, but the emphasis o f the proof is still clear: for each context

sensitive grammar construct an equivalent grammar in which we can apply productions

without exceeding the length o f the derived sentence. Kuroda's emphasis stands in

contrast to contemporary proofs of the same theorem where the emphasis is on the

12 As expected, Kuroda says that input is accepted nondeterministically when there is a
single accepting computation. Curiously, however, he says the same thing about
rejecting: "a string is said to be rejected by M if there is a computation o f M which, given
the string as input, never ends, or ends up off the left end of the tape, or, finally, ends up
off the right end of the tape in a nonfinal state" (Kuroda 1964, p. 209 emphasis added).
This differs from the usual convention o f accepting when there is a single accepting
computation and rejecting only when all possible computations reject.

13 As before, we might be tempted to distinguish between LBA's as acceptors and
LBA's as transducers, but I don't think it makes any difference here. There is no essential
difference between an automaton that accepts nondeterministically and one that
enumerates sentences nondeterministically. It is simply a matter o f how we choose to
decorate one and the same computation tree (e.g., w as input at the root vs. w as output at

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminacy of the computation; we imagine a machine presented with an input, w,

nondeterministically choosing productions and tape positions in an attempt to derive

S=>vv. Since the productions are all non-contracting (recall that a grammar is context-

sensitive if for each of its productions cp—»\)/, \{/ is at least as long as tp), we will never

have an intermediate x, S=>.r=»v, where the length of .r outstrips the input length, and

hence the machine will accept vv iff S=»v.

Kuroda needs both non-expanding derivations and nondeterministic automata to

establish the equivalence between context-sensitive grammars and linear-bounded

automata. It is strange that Kuroda's proof would emphasize the former while saying very

little about the latter. Apparently it was enough to display length-preserving, linear-

bounded grammars; the nondeterministic operation o f the machine could be left to the

reader. But such a presumption is especially odd considering that Kuroda's paper is

considered somewhat o f a landmark work on nondeterministic computation. If

theoreticians had to learn to think nondeterministically, it is not clear to me that Kuroda's

proof would have shown them how. In any case, the Chomsky hierarchy was complete

and by 1965 nondeterminism had become a central feature o f theoretical computer

science.

4 .1 9 6 5 -1 9 7 2

There is a disconnection between the received view o f Kuroda's work and the

work itself. Similar disconnections are evident in the period from 1965 to 1972. We

begin with the work o f Hartmanis and Steams (1965), which initiated the theory of

a leaf).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

computational complexity. The basic idea is straightforward: use the time it takes a

Turing machine to compute a function as a measure o f that function's intrinsic

computational difficulty. At first blush, there is sense o f continuity here; Hartmanis and

Steams present their theory as a natural extension o f Turing's 1936 work, even going so

far as to talk about computable sequences rather than functions. Like Yamada, and Rabin

and Scott, Hartmanis and Steams recognized the need to move away from the

unrestricted Turing machine in order to model working digital computers. 14 They also

suggest that their work complements Myhill's discussion o f a linear-bounded automaton

as a space-bounded measure o f computational complexity. And finally, there is a

recursion-theoretic feel to many o f the results they present (e.g., the set o f all computable

sequences is recursively enumerable, for any set o f sequences time-bounded by a given

function a diagonal procedure can be used to find a sequence not computable in that

time-bound, the set o f all complexity classes is countable and hierarchical, etc.). In this

light, the 1965 work of Hartmanis and Steams fits in nicely with the work that came

14 Unlike Rabin and Scott, Hartmanis and Steams considered the Turing machine a
perfectly appropriate model o f computation:

This particular abstract model o f a computing device is chosen because much of
the work in this area is stimulated by the rapidly growing importance of
computation through the use o f digital computers, and all digital computers in a
slightly idealized form belong to the class o f multitape Turing machines
(Hartmanis and Steams 1965, p. 285).

Although he reports being strongly influenced by automata theory, Hartmanis
recalls that when he and Steams started working on a theory o f computational
complexity, "we realized that finite automata did not provide us with a sufficiently rich
model o f computing to develop the quantitative theories that we believed were needed
and could be created" (Hartmanis 1981, p.45).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

before it. There is, however, an important difference. Hartmanis and Steams are

explicitly and exclusively concerned with deterministic computation.

In hindsight, it is remarkable that the seminal paper in complexity theory—a

theory now dominated by questions about nondeterminism—does not mention the

nondeterministic Turing machine. Hartmanis recalls that by 1962, when he and Steams

began a serious investigation of computational complexity, they had been "seriously

exposed" to aspects o f formal language theory and were well familiar with automata

theory (Hartmanis 1981, pp. 45-46). In particular, Hartmanis had read Chomsky (1962)

and Rabin (1959). Nondeterministic automata figure prominently in both papers.

Hartmanis also recalls that he and Steams had been able to do their work outside the

traditional framework; they were "surprisingly ignorant" of the traditional theory o f

effective computability, and, unlike many of their peers, they were not driven to find "the

automaton that would model real computing" (Hartmanis 1981, p. 47 emphasis in the

original). It would seem that Hartmanis and Steams were not only sufficiently acquainted

with the idea o f a nondeterministic automaton, they were free o f the recursion-theoretic

scruples that might have caused them to avoid nondeterminism. They approached

computational complexity as mathematicians interested in the most general theory, so

they were not limited just to realistic generalizations (even if, following Yamada, they

had placed a premium on developing a theory o f actual digital computers), but at the

same time they could remain blissfully ignorant o f the recursion theorist's exclusive focus

on deterministic computation. And yet there is no mention of a nondeterministic Turing

machine— not as a possible generalization o f computation (a subject they consider at

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

length), nor as a source o f open questions for further study.

We can only speculate about the non-appearance o f the nondeterministic Turing

machine in 1965. In the introduction, Hartmanis and Steams describe the paper's third

section,

One section is devoted to an investigation as to how a change in the abstract
machine model might affect the complexity classes. Some of these classes are
related by a "square law," including the one-tape-multitape relationship: that is if
a is T-computable by a multitape Turing machine, then it is T^-computable by a
single tape Turing machine. It is gratifying, however, that some o f the more
obvious variations do not change the classes (Hartmanis and Steams 1965,
emphasis added).

Although it seems that the generalization to a nondeterministic machine would have been

obvious, the question as to how it might affect complexity classes would have been (and

is still) far from obvious. Perhaps Hartmanis and Steams anticipated the difficulty o f this

question and decided to omit the nondeterministic Turing machine from their work and

spare themselves the headache. It seems more likely, however, that Hartmanis and

Steams were more than happy to settle on a single abstract model o f real computing. The

generalization to nondeterministic Turing machines has little real-world currency. On the

other hand, the generalizations Hartmanis and Steams do consider in the third section o f

their 1965 paper all concern tape arrangements (e.g., multiple tapes and two-dimensional

tapes) that correspond to obvious variations in the architecture of real computers and

their memory. The fact that these variations do not affect complexity classes supports

Hartmanis and Steams' claim that "all digital computers in a slightly idealized form

belong to the class o f multitape Turing machines" and vindicates the choice o f the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

deterministic Turing machine as an abstract model o f time-bounded complexity.15

Quite apart from such speculation, it is strange that Hartmanis and Steams did not

consider nondeterministic machines—here we have another instance where the

discussion o f nondeterminism we might expect, prima facia , never materializes.

Nondeterminism is one o f the defining features of today's complexity theory and yet the

nondeterministic Turing machine is conspicuously absent from Hartmanis and Steams'

seminal work. Looking at the example the other way around we find that the emphasis at

the outset was to develop a theory o f complexity that would apply to real-world

computation; but now, with complexity theory dominated by questions about

nondeterminism, the concern for realistic computation is all but lost. The fact that the

theoretical emphasis has shifted so dramatically reinforces the doubts we expressed in the

last chapter about reconciling nondeterminism and realistic computation.

Next we turn to Cook's 1971 work and find, once again, an odd mix of

continuities and discontinuities. The paper is famous for establishing Cook's theorem—a

constructive proof o f the existence of an NP-complete problem. The sense of complete

comes from recursion theory (and not logic) and it is important to the complexity

theorists because

15 It is interesting that Hartmanis later collaborated with Hopcroft to write "An
Overview o f the Theory o f Computational Complexity" (Hartmanis and Hopcroft 1971)
in which the emphasis on the real-world application is reiterated more strongly than it
was in 1965 despite the intervening work on nondeterministic computation:
"Furthermore, this theory [i.e., computational complexity] must eventually reflect some
aspects o f real computing to justify its existence by contributing to the general
development o f computer science" (Hartmanis and Hopcroft 1971, p. 444, emphasis
added).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We feel we have completely understood and categorized the complexity of a
problem only if the problem is known to be complete for its complexity
class...They [complete problems] are the link that keeps complexity classes alive
and anchored in computational practice (Papadimitriou 1994, p. 166).

Intuitively, a complete problem is at least as hard to solve as any other problem in

the class and is thus thought to capture—or characterize—the difficulty o f all the

problems in the class. We establish completeness by way o f reduction (another notion

from recursion theory). Informally, one problem reduces to another when instances o f the

first problem can be transformed into instances o f the second. A problem is complete for

a given class when any problem in the class can be reduced to it. In Cook's case the target

problem is deciding the set of propositional tautologies in disjunctive normal form. The

basic idea is that we are given some language that is decided by a nondeterministic

Turing machine in polynomial time, and we construct a formula o f propositional logic, in

conjunctive normal form, which will be satisfiable if and only if the machine accepts a

given input within the given polynomial-time bound.16 If the machine does not accept

the input, the constructed formula will be unsatisfiable, and hence the denial o f the

formula (which can be rendered in disjunctive normal form using De Morgan's laws in

16 There are two technical points to make here. First, as we saw in Chapter 2,
constructing the propositional formula is straightforward (all the more so, since the
polynomial bound allows us to use disjunctions and conjunctions in place o f existential
or universal quantification): it is a conjunction o f several disjunctive subformulas
asserting, e.g., that a particular input string appears on the input tape, that at each time-
step the tape head scans exactly one cell, that each cell contains exactly one symbol, that
at each time-step the machine is in exactly one internal state, that tape updates occur
according to the machine's transition table, etc. Second, for any machine and any input
the corresponding formula can constructed in polynomial time. The second point is
important because if we allow inefficient reductions, the sense of completeness becomes
trivial. That is, very hard problems can be reduced to very easy problems if we allow

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

linear time) will be tautological. Thus, if we can decide propositional tautologies we can

solve any problem that is decided by a nondeterministic Turing machine in polynomial

time.

Cook's proof bears an obvious resemblance to Turing's proof for the insolubility

o f the Entscheidungsproblem\ in both cases we have a reduction from the operation o f a

Turing machine to logic. Also, Cook's motivations to explore the scope and limits o f

mechanical-theorem proving are reminiscent o f the questions that motivated Turing's

original work. Finally, Cook puts a recursion-theoretic spin on his results. In this sense,

Cook's 1971 work can be seen as continuing earlier work. By contrast, continuity after

Cook, although often taken for granted, is not so clear.

It is not surprising that Cook is celebrated for initiating the study o f NP-

completeness and for formulating the P=NP question. When we look back at his 1971

work it is hard not to see modem theory inchoate in the results and proof techniques

which are now so methodologically central to complexity theory. Trakhtenbrot (among

others) reinforces this view when he points out that the significance of Cook's work was

not fully appreciated until Karp (1972) demonstrated by way o f example the wide extent

o f natural combinatorial problems that are NP-complete (Trakhtenbrot 1984, p. 396).

This observation, together with the fact that Karp himself credits Cook's work as an

inspiration, leads to the widely accepted view that the work started by Cook found its

fullest expression in Karp. But hindsight can be misleading and in this case it leads to an

anachronistic view of theory.

sufficiently complex reductions.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The fact that it was Karp's later work that popularized Cook's is far from an

unprecedented situation in the history o f science, but it is noteworthy here because it

reminds us that Cook's work was re-introduced into a context that was slightly different

from the one in which it was originally written. While it is tempting to assume that Karp

(1972) simply extended Cook's work, the real story is slightly different. In fact, there are

theoretical discrepancies between Cook and Karp (and for that matter, between Cook's

1971 work and the contemporary approach to NP-completeness). First, Cook and Karp

rely on different senses of reduction. Cook defines reduction in terms of deterministic

query machines (a.k.a. oracle machines):

A query m achine is a multi-tape Turing machine with a distinguished tape called
the query tape, and three distinguished states called the query state, yes state, and
no state respectively. If M is a query machine and T is a set of strings, then a 1=
com putation of M is a computation of M in which initially M is in the initial state
and has an input string w on its input tape, and each time M assumes the query
state there is a string u on the query tape, and the next state M assumes is the yes
state if ueT and the no state if ugT ...

A set S of strings is P-reHucihle (P for polynomial) to a set T of strings iff there is
some query machine M and a polynomial Q(n) such that for each input string w,
the T-computation o f M with input w halts within Q(|w|) steps (|w| is the length of
w), and ends in an accepting state iff w gS (Cook 1971, p. 151).

Karp, on the other hand, says nothing about oracle computation in his definition of

reduction.

Let n be the class o f functions from I* to I* computable in polynomial time by
one-tape Turing machines. Let L and M be languages. We say that L is redncihle
1q M if there is a function f e l l such that f(x)eM o x eL (Karp 1972, p.86).

So-called Cook-reduction is considered to be a weaker, more general notion than Karp-

i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

reduction; however, Karp-reduction is more often used and is the de facto sense of

reduction traditionally associated with the study of NP-completeness. Second, Karp's

presentation o f Cook’s theorem has SATISFIABILITY as the target problem in the

reduction and not that o f deciding DNF tautologies. While SATISFIABILITY is the

canonical example o f a problem in NP, deciding tautologies is a typical example of

problems in coNP. In fact, given that the problem o f deciding tautologies is coNP-

complete, which, together with the current thinking that NP^coNP, suggests that Cook's

example of an NP-complete problem is not really in NP (recall note 3 from the previous

chapter).17 Finally, it is somewhat misleading to attribute the explicit formulation of the

17 On one hand, it is hardly surprising that Cook used DNF tautologies as his target
problem; his interests were in theorem-proving, where validity is a far more important
property than satisfiability. On the other hand, however, it is remarkable that the main
result in Cook’s 1971 paper is so often misremembered as an example of an NP-complete
problem. This situation can be explained by pointing out again that Cook's work was not
really appreciated until 1972, when Karp directed attention toward complete problems.
Thus Cook's original emphasis on theorem-proving and his reduction to DNF tautologies
seem to have been overlooked (cf. Miller 1972). Unfortunately, we won't find much
philosophical comfort in this explanation. Quite to the contrary, it is strange that Karp's
work should be seen as an extension of Cook's when Karp lays the foundation for
distinguishing the two approaches. Cook's target problem is decided by an oracle
machine. Consequently, it makes no difference whether we consider the problem itself or
the complement problem. For example, Cook notes that, like other problems, the problem
o f deciding whether a number is prime can be reduced to the problem of deciding DNF
tautologies because it "or its complement, is accepted by a nondeterministic Turing
machine" (Cook 1971, p. 152 emphasis added). Although it turns out that a
nondeterministic machine can decide whether a number is prime (in fact, the problem of
deciding primality is in both NP and coNP), that result wasn't established until 1975,
which suggests that Cook must have been thinking about the complementary problem of
deciding whether a number is composite when he added primality to his list o f P-
reducible problems—a problem that is easily decided by a nondeterministic polynomial
time algorithm (guess and verify factors). By contrast, Karp relies on nondeterministic
machines to decide the target problem and in this context it is widely believed that there
is a difference between deciding a problem or its complement. And exactly this

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

P=NP question to Cook (cf. Greibach 1981; Sipser 1992; Trakhtenbrot 1984). Although

Cook does suggest that it is "fruitless" to search for certain polynomial time decision

procedures, there is no mention o f NP perse and he is remarkably sanguine when it

comes to the prospects o f proving that DNF tautologies cannot be decided in polynomial

time: "I feel it is worth spending considerable effort trying to prove this conjecture"

(Cook 1971, p. 154).18 While the P^NP conjecture is certainly implicit in Cook's 1971

work, the main thrust of that paper is toward establishing various complexity measures

and in this sense formulating the larger question whether P=NP almost seems incidental.

Karp, on the other hand, speaks explicitly in terms of P and NP and his extensive list of

"classic" problems that turn out to be NP-complete makes it obvious that the P=NP

question is more than incidental. In addition, at the time his work was presented, Karp

reported a preoccupation with the question of equivalence between polynomial-time

deterministic and nondeterministic Turing machines (Miller 1972, p. 177). The P=NP

question as we know it is far more evident in Karp's 1972 work than it is in Cook's 1971

work.

While it might seem that we are splitting theoretical hairs, there is an important

philosophical point to be made here. Cook (1971) and Karp (1972) differ in their sense of

reduction, their statement o f Cook's theorem and in overall emphasis, and yet the two

papers are regarded as continuous efforts. Indeed, one can hardly read about Cook’s 1971

difference divides Cook and Karp.
18 Although Cook does note, despairingly, that the kind o f diagonlization which

establishes the halting problem (a complete problem in it own right) as non-recursive
does not seem to carry over to a proof that DNF tautologies cannot be decided in poly-

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

paper without also reading about Karp’s 1972 paper. How does this happen? How does a

theoretical tradition that is driven by a variety o f subtle distinctions seemingly overlook

these more obvious discrepancies at its foundations? We might answer that not all

differences are irreconcilable and in' this case the differences we have noted are not

differences in kind. From a theoretical point of view this is a perfectly reasonable answer.

But from a more philosophical perspective we find that the theoretical answer flies only

because there is flexibility in the conceptual underpinnings o f nondeterminism—so much

flexibility that our intuitions about nondeterminism are collapsed to suit the theory.

The difference between Cook-reductions and Karp-reductions is a case in point.

There was never any theoretical question about the distinction between the two notions;

recursion theorists had studied analogous reducibilities long before 1972, Karp himself

acknowledged Cook-reduction as a weaker notion, and by 1975 the differences among

resource-bound reductions were well established.19 At the same time, the distinction

between Cook-reductions and Karp-reductions also relates the two notions. Cook-

reductions are described as those in which a polynomial number o f calls to an oracle are

allowed while Karp-reductions are described as those in which exactly one call to the

oracle is allowed. Oddly enough, however, Karp never mentions oracles in his formal

definition o f reduction. Instead, he defines nondeterministic algorithms in very general

terms and discusses how one might think about a nondeterministic machine "guessing" or

pursuing parallel computation paths (Karp 1972, pp. 91-92). Moreover, Karp notes:

time (Cook l971,p.I55).
19 See, e.g. (Ladner, Lynch, and Selman 1975).

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The reader will not go wrong by identifying P with the class o f languages
recognizable by digital computers (with unbounded backup storage) which
operate in polynomial time and / Jwith the class o f string mappings performed in
polynomial time by such computers (ICarp 1972, p.88, emphasis added).

Contrast that view with Cook's informal discussion of reduction, where he

describes an oracle that "knows" the target problem and can decide membership

questions "instantly." On an intuitive level, it is far from obvious that the

nondeterministic machine at the end of a Karp-reduction is doing the same thing as the

oracle machine in a Cook-reduction—and yet, theoretically, Cook-reductions generalize

Karp-reductions.

The theoretical reconciliation between Cook-reductions and Karp-reductions

demands that we think about nondeterministic machines as oracle machines. Not only

does this blur the intuitive contrast between Cook (1971) and Karp (1972), but it also

obscures an important historical difference between oracle and nondeterministic

computation. As mentioned in the last chapter, the introduction of the oracle machine is

due to Turing. There is no question about the when or why for oracle computation. In a

1939 paper Turing explicitly defines oracle machines and then uses them to prove that

there would still be unsolvable problems even if certain problems could be solved by

some "unspecified means" (Turing 1965b). According to Feferman (1988), Turing's idea

was "striking" and even if Turing himself did nothing else with oracle machines, the idea

resurfaced in Post's work in the '40s, with due credit to Turing, and would eventually

"change the face o f recursion theory." While the nondeterministic Turing machine has

had a comparable impact on complexity theory, we have seen that its pedigree is far less

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

certain.

For such a ground breaking paper, Cook (1971) is remarkably conservative; its

motivation and proof-techniques recall Turing’s original efforts, while the notion of an

oracle machine has its roots in a well-defined theoretical tradition. Karp (1972), on the

other hand, sets the stage for the contemporary discussion of NP-completeness. In this

sense the two papers are discontinuous; Cook's paper is something o f a throwback while

Karp's anticipates future work. Even if one were to deny that the transition from Cook to

Karp is so sharply kinked, it should still be clear that a presumption of continuity is

unfounded. At the very least, we have noted a peculiar theoretical ellipsis (cf. note 19)

and what seems to be the conflation o f oracle and nondeterministic computation. Once

again, we see that the received view of nondeterminism is in need o f both historical and

philosophical work.

5. Conclusions

It should be clear by now that if we are hoping for philosophical understanding,

the events from 1936 to 1972 reveal little continuity in the conceptual development of

nondeterminism. First, there was Turing's discussion o f choice machines. Although it

seems to have been overlooked, Turing's is clearly the first formal discussion of

nondeterminism. Moreover, Turing's motivation for proving the equivalence between

(unbounded) deterministic and nondeterministic machines anticipates contemporary

appeals to the equivalence as evidence for the Church Turing thesis. Next, there was

Rabin and Scott's nondeterministic finite automaton. Unlike Turing, Rabin and Scott's

motivation was far more pragmatic than philosophical; for them the (re)introduction o f

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

nondeterminism was a conservative expedient on the way toward a more realistic theory

o f working computers. Then there was Kuroda's work, which began with a problem from

formal language theory and produced a result that is now celebrated for bringing together

a broad community of theoretical computer scientists and teaching them how to think

nondeterministically. But as we saw, Kuroda is surprisingly diffident when it comes to

explaining how his nondeterministic linear-bounded automata works. Finally, there is the

work o f Cook and Karp, which is celebrated for giving us our first true insight into the

class o f problems solvable by polynomial-time bounded nondeterministic Turing

machines. Unfortunately, this insight blinds us to theoretical and historical tensions.

From a technical point o f view, the idea of a nondeterministic automaton remains

constant across these four episodes— we simply allow transition relations rather than

transition functions— but from a conceptual point of view, we find the same technical

device being applied in very different contexts. No single motivation unifies these

various discussions o f nondeterminism.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V. Computer Science and the Philosophy of Science

1. Looking Back and Looking Forward

It is time, finally, to take stock of our efforts. We began with general questions

about the Turing machine. Given its central place in theory, doubts about the Turing

machine cut straight to the core o f theoretical computer science. But rather than initiate a

complete conceptual overhaul, vve opted to take the theory on its own terms in an attempt

to make sense of nondeterministic algorithms. After examining some of the more

mundane results from complexity theory we found that nondeterministic algorithms lack

many of the qualities we intuitively associate with algorithms and we argued that the

prospects for a philosophical reconciliation between ideas about resource bounds,

nondeterminism and the informal notion o f algorithm seem rather grim. Next, vve tried to

fit these ideas into a tidy historical context; but despite our best efforts, the history o f

nondeterminism is still a mess. Although we have pinned down a definite date for the

introduction o f the nondeterministic Turing machine, it is hard to find much continuity in

the landmark papers that followed. In fact, apart from a few anecdotal remarks, very little

has been said about how theoreticians thought about nondeterminism. The history o f

nondeterminism is characterized by disparate motivations and theoretical ellipses. Even

worse, it is not clear that even this early in the history o f theoretical computer science we

will be able to fill in the gaps.1

1 Cf. Davis (1988a) where he despairs at the prospect o f a robust intellectual history of
theoretical computer science. His example o f the inherent difficulties o f such a history

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

On one hand, these results are disappointing. We have done all this work merely

to conclude that the received view o f complexity theory is in need of both historical and

conceptual work—hardly a constructive conclusion. On the other hand, however, we

have uncovered a deep tension at the heart o f theoretical computer science. This by itself

is progress. But more important, in coming to grips with this tension we become better

philosophers. Questions about theoretical computer science force us to clean up loose

rhetoric and might even shed new light on traditional positions in the philosophy of

science.

First, let us reiterate, explicitly, the lurking philosophical tension: given that

history fails to reveal a univocal motivation for nondeterminism, we must face the

possibility that the notion has been put to mutually exclusive theoretical ends. In some

cases nondeterminism is marshalled as evidence in support o f the Church Turing thesis,

while in other cases it strongly suggests that our formal notion o f an algorithm might be

incomplete. For example, we noted at the beginning o f Chapter 3 that Rogers takes it as

philosophically obvious that the informal notion o f an algorithm is deterministic insofar

as it entails ideas about mechanism and discrete step-wise operation. But he also goes on

to argue that the informal notion of an algorithm need not be constrained by any bound

on how long the computation takes. Although Rogers himself does not consider the

possibility, it is clear in this context how the equivalence between unbounded

deterministic and nondeterministic Turing machines might further buttress what Rogers

calls the Basic Result— the fact that a wide variety o f formal characterizations o f

reflect many of the problems we have encountered.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

computable pick out the same class o f functions. It makes no difference whether our

formal notion o f algorithm is deterministic or nondeterministic; exactly the same class of

functions ends up being computable. The equivalence gives us more reason to believe

that we have found in the Turing machine an adequate formal analogue for our informal

intuitions about algorithms. At the same time, however, Rogers concedes that there is

room to debate whether the informal notion o f an algorithm entails a constraint on the

time o f computation. The nod to the theory of complexity is obvious, but there is far

more at stake here than a simple acknowledgement. As soon as we impose resource

bounds, the equivalence between deterministic and nondeterministic Turing machines

goes up for grabs. Indeed, the fact that there is wide-spread belief that P^NP, together

with the idiosyncratic features we noted in Chapter 3, suggests that nondeterministic

algorithms are fundamentally different from deterministic ones. Either we can ignore

resource bounds and celebrate the equivalence between deterministic and

nondeterministic Turing machines as evidence for the Church Turing thesis, or we can

impose resource bounds and forget about the equivalence. As we said from the outset, we

cannot have it both ways.

Returning to the questions we raised in Chapter 4, the idea o f a nondeterministic

Turing machine might split the classical sense o f algorithm into incomparable notions.

Such a split would make it easier to account for the fact that in one context we have an

assumption that is theoretically conservative, while in another context the same

assumption leads to a variety o f (putative) distinctions. It might also allow us to explain

away the counter-intuitive features o f nondeterministic algorithms— for it is hardly

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

surprising that a fundamentally different sense o f algorithm would rest on intuitions far

removed from those that underwrite the classical sense o f algorithm. Still, if there are

really incomparable senses o f algorithm here, we must radically readjust our view of the

ongoing work in complexity theory. Theoretical computer science presupposes a robust

notion o f algorithm as its object of study, and it is natural to assume that ongoing work

re flects a deeper understanding of that notion. But if complexity theory rests on a sense

o f algorithm that undermines or, perhaps, even supplants the classical sense, then we

must question how the contemporary theory relates to the work that came before it. In

this light, we might come to regard the persistent mention of Turing machines and the

oft-cited analogies to recursion theory as historical curiosities in the development of

complexity theory, but it would be hard to justify conceptual ties to much of the previous

work if it turns on a fundamentally different sense o f algorithm. It is one thing to refine

theoretical foundations but quite another to replace those foundations altogether.

In the end, these questions about determinacy and resource bounds betray deeper

questions about what it is to be algorithmic. Although Church, Turing and Kleene

(among others) have been celebrated for providing a definitive answer to that question,

they only opened the subject; they did not close it. We have explored just one avenue of

investigation and discovered that nondeterminism has motivated a variety o f haphazard

theoretical developments and might ultimately reflect a splintering sense o f algorithm. At

the very least, it should be clear that the complexity theory of today is dealing with a

sense o f algorithm far removed from that put forward in the '30s.

Even if we cannot immediately make sense o f these developments, it is important

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that we take notice o f them nonetheless. For one reason, the language of computation is

now entering into philosophical debate. Unfortunately, the usage tends to be uncritical

and consequently a good number o f philosophical debates generate heat and smoke but

very little light. For example, consider Searle’s (1990) discussion o f "multiple

realizability." Computers are said to be multiply realizable in the sense that they are

characterized by the manner of their construction and not the materials; if it is built in the

right way a machine constructed from water pipes and plumbing valves will be just as

much a computer as a machine built from MSI chips and printed circuit boards. From this

view a machine need only display the right kind of functional relationship between

"input" and "output" to be a computer. Although multiple realizability reflects a

remarkable separation of form and function, Searle worries if such a view commits us to

a view that any physical object is a computer at some level of description; he even goes

so far as to suggest that, "the wail behind my back is right now implementing the

Wordstar program, because there is some pattern of molecule movements which is

isomorphic with the formal structure o f Wordstar" (Searle 1990, p. 27).

Searle raises an interesting question: if computation cannot be characterized by

the stuff o f which computers are made, what makes something computational? Moreover,

if we cannot say what it is to be computational, what sense is there in asserting a

computational theory of mind? One response comes from Copeland, who claims "To

compute is to execute an algorithm" (1996, p. 335). The idea is straightforward: we call

something a computer when we can specify (in advance) a relation between an

underlying architecture (whatever the physical implementation might be) and a step-by-

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

step flow of control. Presumably, we cannot even begin to describe how the movement of

molecules relates to what Searle glibly identifies as "the formal structure o f Wordstar"

and so we do not regard the wall behind his back as a computer.

While this exchange between Searle and Copeland is engaging, it also strikes me

as ill-framed. To be fair to both Searle and Copeland, we have caricatured a debate about

the computational theory of mind, which is set in a much wider context in the philosophy

o f mind. At the same time, however, the philosophy o f mind is one place where the

unbounded sense o f algorithm is clearly inappropriate. Indeed, if there is philosophical

agreement about anything in that context it is that brains are finite. So, if mind is the

brain's execution of an algorithm, then the sense of algorithm had better be both resource-

bounded and tractable (in some sense). Moreover, the possibility that modem complexity

theory might reveal a splintered sense of algorithm should weigh heavily on this debate.

The homely sense of algorithm we associate with Turing's work—intuitions both Searle

and Copeland exploit— might be too coarse a notion or, perhaps, the wrong notion

altogether for a discussion of algorithms o f such manifest complexity. This is not to

suugest that complexity theory will settle the debate between Searle and Copeland, but

rather to point out that before we can even engage the debate we had better look at

complexity theory and decide whether we have framed the debate in the appropriate

terms.

Obviously, a philosophical appeal to theoretical notions should be informed and

critical, but there is also another reason that philosophers, and philosophers o f science in

particular, should pay attention to the recent developments in complexity theory.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Consider what Hartmanis has to say about theoretical computer science as science:

I see computer science as a brand new species among other sciences, and I
believe it differs fundamentally from the older sciences. As a matter o f fact, I am
convinced that in large parts o f computer science the classic research paradigms
from the physical sciences or mathematics do not apply and that we have to
develop and understand the new paradigms for computer science research. The
fundamental difference between, say, physics and computer science is that in
physics we study to a very large extent a world that exists, and our main objective
is to observe and explain the existing (and predict new observable) phenomena.
The relations between experiments and theory are quite well understood and
richly illustrated by successful examples. Computer science, on the other hand, is
primarily interested in what can exist and how to describe and analyze the
possible in information processing. It is a science that has to conceptualize and
create the intellectual tools and theories to help us imagine, analyze, and build the
feasibly possible (Hartmanis 1981, p.43).

Are we really witnessing the birth o f a new science? There are several reasons to think

we are. For instance, Hartmanis goes on to say that understanding the relation between

theory and practice will be important for making sense o f computer science as a new

science. The role o f nondeterminism is certainly one example where the traditional views

of theory and practice break down. Here we have a notion that, from a practical point of

view, is virtually inscrutable. As we have said before, nondeterminism is something o f an

anathema to digital design; real computers do not guess what to do next. And yet

nondeterminism is a central feature o f theoretical computer science. Contrast the state o f

affairs we just described with the situation in the "other sciences;" although theorists and

experimentalists are engaged in different activities, the objects o f study presumably

remain constant. One might say that the study of computation unites the theorist and the

engineer, but at best, this connection is degenerate insofar as theory mostly provides

hardware engineers with examples o f what they cannot hope to do, and at worst it seems

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that theory and practice could disconnect altogether. Consider again Pitowski's

suggestion that there might be NP-complete problems with physical polynomial time

solutions even if it happens theoretically that P^NP. If it is possible to exploit physical

analogues to provide tractable solutions to theoretically "hard" problems, will such

solutions be computational? For better or worse, the theoretical sense o f the word is

rooted in the plodding, discrete behavior o f a Turing machine, and it is far from clear that

the same intuitions (much less the theoretical results) would apply to an analog

"computer." The possibility o f what can exist in this case forces the philosopher o f

science to rethink the relation between theory and practice. It is hard enough to see the

theoretical payoff even when we presume a constant sense o f computational.2 1 am not

sure how we would explain the situation if theory and practice ultimately revolved

around fundamentally different conceptual foundations.

It is hard to sort out the relation between theory and practice because it is hard to

1 A sociologist would have field day studying the advent o f computer science as an
academic profession. The struggle for disciplinary identity was hard fought and the
division between those who view computer science as applied mathematics and those
who view it as electrical engineering exists to this day. So, it comes as no surprise when
those in opposing camps cast a skeptical eye on each other's work. But it is surprising
when the theorist expresses doubts about the value o f his own work. We have already
mentioned Hartmanis' worry that too much of the theory is hidden "behind obscure
mathematical formalizations" and that "[t]ime and again, we have valued the difficulty o f
proofs over the insights the proved results give us about computing; we have been
hypnotized by mathematical elegance and pursued abstraction for its own sake"
(Hartmanis 1981, pp. 49-50). Even more telling is the fact that such worries have plagued
the theory from the beginning. At the 1972 conference on the Complexity o f Computer
Computations, a distinguished panel o f theorists (Karp, Rabin, Hopcroft, to name a few
in attendance) was asked, point blank, to discuss "[w]hat specific examples have been
found to demonstrate how real computers computations were improved from studies of
this type" (Miller 1972, p. 170). It is striking that such a question would come up at all,

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sort out the theory itself. Here again, the role o f nondeterminism forces us to rethink

traditional views. Hartmanis suggests there are no natural kinds for the computer

scientists to study. There is no independently existing species algorithm against which

we can compare our theoretical results. There are only intuitions and the formal

analogues we introduce. We have mentioned the sort o f evidence given to support the

claim that the unbounded Turing machine captures all our intuitions about algorithms.

That evidence trades on a combination of unexpected convergence and intuitive appeal—

it is the kind of theoretical evidence easily recognized by the philosopher o f science. But

we have also argued contrary to the received view that ideas about resource bounds and

nondeterminism do not fit very easily into this body of evidence. In fact, we have seen

that the idea of a resource-bounded nondeterministic algorithm actually contradicts many

o f our intuitions about algorithms. So, if it is not evidence (at least not in any usual sense

o f the word), what exactly is the theoretical status of nondeterminism? It is tempting to

characterize nondeterminism as an unrealistic but useful model o f computation. Such a

view resonates with the notion o f idealization—another notion familiar to the philosopher

o f science. But if nondeterminism is an idealization, it is a peculiar kind. In general,

idealizations allow us to impose a simpler, albeit unrealistic structure on the flux of

phenomena we observe. An idealization is useful insofar as it makes matters more

perspicuous. It is odd to think that we might do the same to the "conceptualizations" and

"intellectual tools" o f our own construction. Can we idealize our own ideas?

Some will argue that we have simply misconstrued complexity theory. Perhaps it

much less at a conference devoted to theory.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is better understood as theory concerned with "the intricate and exquisite interplay

between computation (complexity classes) and applications (that is, problems)"

(Papadimitriou 1994, p. v). The problems themselves—as opposed to the algorithmic

solution to those problems—become the objects o f study. Nondeterminism is neither

evidence nor idealization; rather, it is a useful abstraction, a generalization that leads to a

rich classification of problems. The emphasis here is decidedly mathematical and it

avoids what otherwise seems like a procrustean fit between complexity theory and our

traditional views o f scientific theory. At the same time, however, it is hard to understand

nondeterminism even as part o f an ongoing mathematical investigation. In many ways,

the mathematical development o f complexity theory reminds me of the development of

set theory near the turn of the century. Once again, we find that a seemingly innocuous

generalization can take a theory originally motivated by familiar and robust intuitions

and turn it on its head. Although nondeterminism does not lead to outright paradox, it

does lead to a number of notoriously open questions. Just as the intuitionist worried about

the path to Cantor's paradise, we do well to ask about the assumption that got us here.

There are hints of a Platonic attitude toward nondeterminism. Time and again

theorists speak of the "nature of nondeterministic computation" and our "limited

understanding of it." While such an attitude might be understandable in the face o f so

many open problems, it is still odd that it would find expression in a discipline so firmly

rooted in the constructivist tradition o f finite combinatorial mathematics. There are also

more pragmatic attitudes toward nondeterminism. Realistic or not, it induces a rich

theoretical structure and allows us to draw analogies to the more established branches of

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

mathematics (e.g., recursion theory, model theory etc). Such an attitude is reminiscent o f

Russell's defense o f the "logical" axioms of Principia Mathematica; it is a sort of wait-

and-see approach. (Take the axiom now and decide later if you like where you end up

theoretically.) Unfortunately, even the most productive theorist must admit that a good

part o f his work is tentative. At present it is very hard to judge the theoretical utility of

nondeterminism. In fact, as we suggested in Chapter 3, the assumption has led to a sort o f

theoretical regress, as researchers introduce ever more remote notions to prove that

P?iNP, while some have even begun to pursue independence proofs that neither the

conjecture nor its negation is provable— not exactly the kinds o f results one would like to

see when judging the theoretical utility o f nondeterministic Turing machines. On the

other hand, it is hard to ignore the feeling that we actually have discovered something

robust and natural when we point to the unbounded equivalence between deterministic

and nondeterministic machines as evidence for the Church Turing thesis, and we cannot

deny that nondeterminism leads to an interesting, albeit tentative, theory. It is thus

difficult to categorize the study o f nondeterminism along the lines philosophers have

traditionally imposed upon mathematical investigation; it is not entirely Platonic, nor

formal, nor constructive. But it is an investigation o f something, and when we understand

what that something is we will, I think, have a finer-grained philosophy o f mathematics.

It is fitting that we should conclude with a nod toward the philosophy o f

mathematics. Sorting out the conceptual tensions here is really a problem for the

philosopher of mathematics. Complexity theory began as a sort of applied mathematics,

but now the state o f the art is mathematical through and through. Intuitions about

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

machines and the solutions to specific combinatorial problems have given way to variety

o f inter-theoretic reductions between logic, model theory and complexity theory. What

we really want to know is how a theory that began with a concern for concrete machines

and real life algorithms can have so much to say about a highly abstract tradition in

mathematical logic, and vice versa. If we could get a better grip on these mathematical

motivations and connections, we might be able to address our concerns about

nondeterministic algorithms.

We might never have an answer to the P=NP question, and the nondeterministic

Turing machine might be forever lost in theoretical limbo. It might also be impossible to

give a philosophically satisfying account o f development o f complexity theory.

Nevertheless, it is doubly important that philosophers o f science try to make sense o f the

role o f nondeterminism in complexity theory. Not only do we afford ourselves the

opportunity to get in on the ground floor as a nascent science sorts out the relation

between theory and practice, we might also find a middle ground on some long standing

questions from the philosophy o f mathematics. There is work to be done, and it is worth

doing.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Bovet, Daniel Pieere and Pierluigi Crescenzi. 1994. Introduction to the Theory o f
Complexity. New York: Prentice Hall.

Chandra, A. K. and L. J. Stockmeyer. 1976. Alternation. In FOCS, 17.

Chomsky, Noam. 1959. On certain formal properties o f grammars. Information and
Control2: 137-167.

Chomsky, N. 1962. Context-free grammars and pushdown storage. MIT Quarterly
Progress Report 65: 187-194.

Church, Alonzo. 1965. An Unsolvable Problem of Elementary Number Theory. In The
Undecidable, ed. Martin Davis. Hewlett: Raven Press.

Cobham, A. 1964. Proceedings o f the 1964 International Congress for Logic,
Methodology, and the Philosophy o f Science, ed. Y. Bar-Hillel:24-30: North-Holland.

Cook, S A. 1971. The complexity o f theorem-proving procedures. In Proceedings o f the
ACM Symposium: 151-158. Shaker Heights.

Copeland, Jack B. 1996. What is Computation. Synthese 108, no. 3: 335-359.

Davis, Martin. 1958. Computability and Unsolvability. New York: McGraw-Hill Book
Company.

Davis, Martin. 1965. The Undecidable. New York: Raven Press.

Davis, Martin. 1982. Why Godel didn't have Church's Thesis. Information and Control
54: 3-24.

Davis, Martin. 1988a. Influences o f Mathematical Logic on Computer Science. In The
Universal Turing Machine A Half-Century Survey, ed. Rolf Herken. Oxford: Oxford
University Press.

Davis, Martin. 1988b. Mathematical Logic and the Origin o f Modem Computers. In The
Universal Turing Machine A Half-Century Survey, ed. Rolf Herken. Oxford: Oxford
University Press.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Edmonds, J. 1965. Paths, trees, and flowers. Canadian Journal o f Mathematics 17:
449-467.

Evey, James R. 1963. The Theory and Applications of Pushdown Store Machines.
Doctoral, Harvard University.

Feferman, Solomon. 1988. Turing in the Land of O(z). In The Universal Turing Machine
A Half-Century Survey, ed. Rolf Herken. Oxford: Oxford University Press.

Godel, Kurt. 1965a. On Undecidable Propositions o f Formal Mathematical Systems. In
The Undecidable, ed. Martin Davis. New York: Raven Press.

Godel, Kurt. 1965b. Remarks Before the Princeton Bicentennial Conference on Problems
in Mathematics. In The Undecidable, ed. Martin Davis. Hewlett: Raven Press.

Greibach, S A. 1981. Formal Languages: Origins and Directions. Annals o f the History o f
Computing 3, no. 1: 14-41.

Hartmanis, Juris. 1981. Observations About the Development o f Theoretical Computer
Science. Annals o f the History o f Computing 3, no. 1: 42-51.

Hartmanis, J and J E Hopcroft. 1971. An overview o f the theory o f computational
complexity. Journal o f the Association fo r Computing Machinery 18: 444-475.

Hartmanis, J. and H. B. Hunt. 1973. The LBA problem And Its Importance In The
Theory O f Computing. In Proceedings o f a Symposium in Applied Mathematics o f the
A.M.S. and SJ.A.M., ed. Richard M. Karp, 7. New York City.

Hartmanis, J and R E Steams. 1965. On the computational complexity o f algorithms.
Transactions o f the American Mathematical Society 117: 285-306.

Hilbert, David and W Ackermann. 1950. Principles o f Mathematical Logic. Translated
by Hammond, L .M. Leckie, G. G. Steinhardt, F. New York: Chelsea Publishing
Company.

Hodges, Andrew. 1983. Alan Turing: The Enigma. New York: Simon and Schuster.

Hopcroft, John E. and Jeffrey D. Ullman. 1969. Formal Languages and Their Relation to
Automata. Reading: Addison-Wesiey.

Hopcroft, John E and Jeffrey D Ullman. 1979. Introduction to Automata Theory,
Languages, and Computation. Reading: Addison-Wesiey Publishing Company.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Immerman, N. 1988. Nondeterministic space is closed under complementation. SIAM
Journal on Computing 17: 935-938.

Kannan, R. 1981. Towards separating nondeterministic time from deterministic time. In
FOCS, 22:235-243. Nashville.

Karp, R M. 1972. Reducibility among combinatorial problems. In Complexity o f
Computer Computations, ed. R . E. Miller and J. W. Thatcher:85-103: Plenum Press.

Kleene, Stephen C. 1952. Introduction to Metamathematics. Edited by M H Stone, O
Zariski, S S Chem, and L Nirenberg. The University Series in Higher Mathematics.
Princeton: D. Van Nostrand Company, Inc.

Kleene, S C . 1981. Origins o f Recursive Function Theory. Annals o f the History o f
Computing 2, no. I: 52-67.

Kleene, Stephen C. 1988. Turing's Analysis o f Computability, and Major Applications of
It. In The Universal Turing Machine A Half-Century Survey, ed. Rolf Herken. Oxford:
Oxford University Press.

Kuroda, S. Y. 1964. Classes o f languages and linear-bounded automata. Information and
Control 7: 207-223.

Ladner, R. E., N. A. Lynch, and A. L. Selman. 1975. A comparsion of polynomial time
reducibilities. Theoretical Computer Science I: 103-123.

Landweber, P. S. 1963. Three theorems on phrase structure grammars o f type I.
Information and Control 6: 131-137.

McCarthy, J. 1962. Towards a Mathematical Science o f Computation, in Information
Processing 1962, ed. Cicely M Popplewell:21-28. Amsterdam: North-Holland Publishing
Company.

Miller, Raymond E. 1972. Panel Discussion. In Complexity o f Computer Computations,
ed. Raymond E. Miller and James W. Thatcher. New York: Plenum Press.

Minsky, Marvin L. 1967. Computation: Finite and Infinite Machines. Englewood Cliffs:
Prentice Hall.

Myhill, J. 1960. Linear Bounded automata. WADD Tech. Note No. 60-165 .

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Papadimitriou, Christos H. 1994. Computational Complexity. Reading: Addison-Wesiey
Publishing Company.

Paul, W. J., N. Pippenger, E. Szemredi, and W. T. Trotter. 1983. On determinism versus
non-determinsim and related problems. In FOCS, 24:429-438. Tucson.

Pitowsky, I. 1990. The Physical Church Thesis and Physical Computational Complexity.
lyyun 39:81-99.

Post, Emil. 1965. Recursive Unsolvability of a Problem ofThue. In The Undecidable, ed.
Martin Davis. New York: Raven Press.

Prosser, Franklin P and David E Winkel. 1996. The Art o f Digital Design. Englewood
Cliffs: Prentice-Hall.

Rabin, M 0 and D Scott. 1959. Finite automata and their decision problems. IBM Journal
o f Research 3, no. 2: 115-125.

Rogers, Hartley, Jr. 1967. Theory o f recursive Functions and Effective Computability.
Cambridge: The MIT Press.

Rogers, Hartley. 1969. The Present Theory o f Turing Machine Computability (1957). In
The Philosophy o f Mathematics, ed. Jaakko Hintikka. London: Oxford University Press.

Savitch, W J. 1969. Deterministic simulation o f non-deterministic Turing machines. In
Conference Record ACM symposium on the Theory o f Computing:247-248.

Searle, John R. 1990. Is the Brain a Digital Computer. In Proceedings and Addresses o f
the American Philosophical Association, 64:21-37. Los Angeles.

Shepherdson, J. C. and H. E. Sturgis. 1963. Computability o f fecursive functions. Journal
o f ACM 10: 217-255.

Sipser, M. 1992. The history and status o f the P versus NP problem. In. Proceedings o f
the 24th Annual ACM symposium on the thoery o f Computing:pp. 603-618.

Smith, Jeffrey D. 1989. Design and Analysis o f Algorithms. Boston: PWS-KENT
Publishing Company.

Spaan, E, L. Torenvliet, and P. van Emde Boas. 1989. Nondeterminism, fairness and a
fundamental analogy. EATCSBulletin 37: 186-193.

Stewart, Iain A. 1996. The Demise o f the Turing Machine in Complexity Theory. In

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Machines and Thought: The Legacy o f Alan Turing, ed. P J R Millican and A Clark, 1.
Oxford: Clarendon Press.

Trakhtenbrot, B. A. 1984. A Survey o f Russian Approaches to Perebor (Brute-Force
Search Algorithms. Annals o f the History o f Computing 6, no. 4: 384-400.

Turing, A. M. 1937. Computability and Lambda-Definability. The Journal o f Symbolic
Logic 2, no. 4: pp. 153-164.

Turing, Alan M. 1965a. On Computable Numbers, with an Application to the
Entscheidungsproblem. In The Undecidable, ed. Martin Davis. Hewlett: Raven Press.

Turing, Alan M. 1965b. Systems o f Logic Based on Ordinals. In The Undecidable, ed.
Martin Davis. Hewlett: Raven Press.

Wang, Hao. 1974. From Mathematics to Philosophy. New York: Humanities Press.

Webb, Judson C. 1980. Mechanism, Mentalism, and Metamathematics. Boston: D. Reidel
Publishing Compnay.

Yablonskii, S. B. 1959. The Algorithmic Difficulties of Synthesizing Minimal Switching
Circuits. Problems o f Cybernetics 2: 401-.

Yamada, H. 1962. Real-Time computation and recursive functions not real-time
computable. IRE Transactions EC-1 T. 753-760.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CURRICULUM VITAE

Walter Warwick, Research Analyst

EDUCATION

PhD Candidate, History and Philosophy o f Science, Indiana University.

MS, Computer Science, Indiana University 6/00.

Logic Certificate, Program in Pure and Applied Logic, Indiana University 6/00.

MA, Philosophy, Tufts University, 2/96.

BA, Philosophy, Magna cum Laude, University o f Colorado, 8/92.

AWARDS

Indiana University Fellowship, 1995.

Philosophy Scholarship, Tufts University, 1993.

EMPLOYMENT
Research Analyst, Micro Analysis and Design, from 1999 to present.

Associate Instructor, Indiana University, from 1996 to 1999.

PROFESSIONAL EXPERIENCE

As a Research Analysts at Micro Analysis and Design, I am responsible for researching and
developing computational models of Recognition Primed Decision making (RPD). Growing out
of the school of Naturalistic Decision Making, RPD theory is regarded as a foil to traditional,
rational-choice strategies of decision-making. RPD presents interesting challenges from a
computational point of view; where rational-choice strategies of decision-making are often
simulated by straightforward cost-benefit routines, my approach to RPD depends on an abstract
representations of the decision-maker’s knowledge together with a fuzzy-recognition algorithm.

My graduate research concerns foundational questions about theoretical computer science. In
particular, I have examined the historical and philosophical development of nondeterministic
algorithms. It is an area that has received remarkably little attention—especially given the central
role nondeterminism plays in the host of notoriously open questions in complexity theory.

As an Associate Instructor at Indiana University, I taught for both the Department of Mathematics
and the Department of the History and Philosophy of Science.

PUBLICATIONS
Papers Published in Journals, Proceedings or Books

Archer, S., Warwick, W., & Oster, A. (2000). Current Efforts to Model Human Decision
Making in a Military Environment. Paper presented at the Proceedings of the Military,
Government, and Aerospace Simulation Symposium, Washington, DC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Walter Warwick, “The Indeterminacy of Nondeterminism,” Forthcoming in Proceedings
for the 1999 New Trends in Cognitive Science Conference, Vienna, Austria.

Papers Presented at Meetings
“The Indeterminacy of Nondeterminsim,” presented to the Indiana University Logic
Group, February 10, 1999.
“Russell and the Decline of Logicism,” presented to the Indiana University Logic Group,
April 15, 1998.
“Discrepancy and the Truth of Explanatory Law,” presented to the Rocky Mountain
Regional conference for the Philosophy of Science, Spring 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

