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I. Framing the Problem

1. Who Wants to be a Millionaire?

There are at least two ways to become a millionaire. The first is to embarrass 

yourself on any one o f a number of nationally televised game shows. The second is to 

solve the P versus NP problem (see http://www.claymath.org/prize_problems/index.htm 

for details). For those unwilling to pander to the stupid and greedy, the choice here is 

obvious, but the problem is not.

On the Claymath homepage, the P versus NP problem is described in this way:

It is Saturday evening and you arrive at a big party. Feeling shy, you wonder 
whether you already know anyone in the room. Your host proposes that you 
must certainly know Rose, the lady in the comer next to the dessert tray. In 
a fraction o f a second you are able to cast a glance and verify that your host 
is correct. However, in the absence of such a suggestion, you are obliged to 
make a tour o f  the whole room, checking out each person one by one, to see 
if there is anyone you recognize. This is an example of the general 
phenomenon that generating a solution to a problem often takes far longer 
than verifying that a given solution is correct. Similarly, if someone tells 
you that the number 13,717,421 can be written as the product o f  two smaller 
numbers, you might not know whether to believe him, but if  he tells you 
that it can be factored as 3607 times 3803 then you can easily check that it is 
true using a hand calculator. One of the outstanding problems in logic and 
computer science is determining whether questions exist whose answer can 
be quickly checked (for example by computer), but which require a much 
longer time to solve from scratch (without knowing the answer). There 
certainly seem to be many such questions. But so far no one has proved that 
any o f them really does require a long time to solve; it may be that we 
simply have not yet discovered how to solve them quickly. Stephen Cook 
formulated the P versus NP problem in 1971.

In addition to the informal description, there is a link to a "technical" description o f the 

problem given by Cook himself:

1
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The P versus NP problem is to determine whether every language accepted by 
some nondeterministic algorithm in polynomial time is also accepted by some 
(deterministic)algorithm in polynomial time.

At first blush, it is not clear that the two descriptions refer to the same problem. 

The first description talks about quickly checking solutions while the second invokes a 

recondite notion of nondeterminism (the "N" in "NP"). Obviously, the two descriptions 

are intended to complement one another; the former primes the intuitions while the latter 

refers to the formal framework that gives rise to the problem. Still, it is striking that the 

two descriptions would be so disparate. In fact, there is such a disconnection between the 

two descriptions that we might wonder how the formal and informal accounts o f the P 

versus NP problem are related. The conspicuous lack o f explanation suggests that the 

relation is obvious. Asking for further explanation here is like shopping for luxuries; if 

you have to ask, you probably don't understand the problem. But we should not shy away 

from asking. Indeed, the P versus NP problem is rooted in a tradition that began with a 

painstaking effort to make the relation between the informal and the formal as clear as 

possible. In this essay, we will examine the notion o f nondeterminism that underlies the P 

versus NP problem and argue that, far from being obvious, the relation between the 

formal and informal description o f the P versus NP problem betrays an unexpectedly 

complicated history in the development o f theoretical computer science.

Before we launch into a detailed examination o f nondeterminism let us first 

define the deterministic Turing machine and then make a few observations. Intuitively, 

we can think o f a Turing machine as consisting o f two parts: a finite control and a tape 

with an indefinite number o f cells. The control consists o f a finite collection o f internal

2
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states and a read/write head that scans the tape one cell at a time. Each cell contains a 

single symbol from a finite alphabet. Turing machines compute in a step-wise manner. At 

each step, the control assumes exactly one o f  its internal states and scans the contents o f  a 

single cell. Depending on the current state and the contents o f the cell, the control will 

overwrite the contents o f the cell (perhaps "printing" a blank or even rewriting the old 

symbol) and then move either one cell to the right or to the left before assuming a new 

internal state and beginning the next step in the computation. More formally, Turing 

machines are defined as ordered tuples o f some sort.1 For instance, Papadimitriou (1994) 

defines a Turing machine, M, as a quadruple, M=<K, £ , 8, s> where K is a finite set of 

states, £  is a finite set o f symbols, 8 is a transition function mapping states and symbols 

to states and behaviors (where a behavior is an atomic action such as printing a new 

symbol or moving left or right) and s is the designated "start" state in K. The behavior o f 

a Turing machine, and hence the machine itself, is completely determined by its 

transition function.

Now, let us make a few observations. First, we should note that the intuitive 

picture o f a Turing machine is quite compelling, but as far as the theory o f computation is 

concerned, "the ultimate characterization [of a Turing machine] is entirely mathematical" 

(Rogers 1967, p. 13). Like the two descriptions o f the P versus NP problem, the Turing 

machine provides us another curious example o f the interplay between informal

1 Presentations differ in terms o f the tuple used to define Turing machines; sometimes
machines are defined as quadruples (Papadimitriou 1994), other times as quintuples 
(Bovetand Crescenzi 1994) or even septuples (Hopcroft and Ullman 1979). Such 
differences arise from idiosyncratic notions o f  what to count as an atomic action, but they 
are theoretically inconsequential.

3
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intuitions and formal characterizations. Second, having defined the deterministic Turing 

machine in terms o f a transition function, we define a nondeterministic Turing machine 

in terms o f a transition relation, where the current state and symbol do not uniquely 

define the next state and action. Thus the technical distinction that Cook refers to 

between a deterministic and nondeterministic algorithm in his formal description o f the P 

versus NP problem is clear and unambiguous. By contrast, the informal description of the 

P versus NP problem turns on our "understanding of nondeterminism" (Papadimitriou 

1994, p. 45, emphasis added). It is one thing to offer a formal definition, but quite 

another to understand the notion thus defined. In fact, there are at least four different 

ways o f thinking about nondeterminism.

2. Four Intuitions about Nondeterniinism
2.1 Nondeterniinism as an example of extensional equivalence

First, we can think about nondeterminism as further evidence that the formal

notions o f computable are sufficiently general. In particular, we can point to the fact that 

nondeterministic Turing machines are no more powerful than deterministic Turing 

machines with respect to the class o f functions they compute as another example in a 

long list o f extensional equivalencies between seemingly disparate models of 

computation. (We will outline a proof of the equivalence o f deterministic and 

nondeterministic Turing machines in Chapter 3.)

There is an obvious precedent for such a view of nondeterminism. By the mid 

1930s there were several well-known formalisms presented as analogues o f  the informal 

notion o f an algorithm: there were the general recursive function due to Herbrand and 

Godel,; the ^.-definable functions due to Church; and, finally, the functions computable

4
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by a Turing machine. Although each of these formalisms was put forward to answer the 

same question (viz., what is it to be algorithmic?) they were strikingly different. 

Moreover, it seemed that the arguments that any one of these formalisms could exhaust 

the informal notion o f  algorithm would ultimately be philosophical. Consequently, it was 

rather surprising that almost as soon as the three formal notions were on the table, 

rigorous equivalence proofs were given showing that the recursive, effectively calculable 

and computable functions are coextensive.2 These equivalence proofs suggested that the 

formal accounts adequately captured the informal notion o f an algorithm and thus the so- 

called Church Turing thesis was bom.

Likewise, nondeterministic computation seems quite different than deterministic 

computation. Indeed, we will see below that deterministic Turing machines compute in 

the plodding, uninspired and exhaustive manner one might expect from a machine. 

Nondeterministic machines, by contrast, "guess" as they compute and, moreover, they 

always guess correctly. The fact that nondeterministic machines are no more powerful 

than deterministic machines is as striking as any of the original equivalencies established 

in the '30s, and it leads to a view o f nondeterminism as further evidence for the Church 

Turing thesis. Once we begin thinking in such terms, it is hard not to think in the terms 

that originally motivated the Church Turing thesis, namely, what is it to work 

algorithmically, to follow a set o f instructions or to behave like a machine.

2 In a series of strange historical twists, it was Church (not Godel or Herbrand) who
argued for the adequacy o f the general recursive functions as a formal account o f
effectively computable; it was Kleene (and not Church) who demonstrated the 
equivalence o f the ^.-definable and general recursive functions; and it was Godel who 
publicly celebrated Turing's account.

5
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2.2 Nondeterminism as a natural reflection of the mathematician's behavior

Second, nondeterminism can be seen as a reflection of what humans actually do

when working with a formal system (e.g., a system o f natural deduction). Unlike the 

intuitions associated with extensional equivalence, intuitions about nondeterminism as a 

more natural model o f computation speak directly to the question o f whether a formal 

model o f computation can do justice to the intuitive notion of an algorithm. Indeed, 

Turing himself recognized that any argument suggesting that the formal notion of 

computable exhausts the informal notion of algorithm would be essentially intuitive 

(Turing 1965a, p. 135). Although it seems counter-intuitive, we will argue below that 

nondeterminism actually deepens the intuitive appeal of Turing’s account. Moreover, we 

will gain an appreciation for the profound impact such appeals to intuition had. In the 

meantime, we will simply note that mathematicians since Godel3 have celebrated the 

Turing machine as a model that finally made the mathematical notion of an algorithmic 

procedure mathematically precise. There were, o f course, idea about recipes and rules 

long before Turing, but his analysis was particularly compelling. Even if Church had the 

claim on priority, the idea that the informal notion of algorithm might be characterized by 

any formal notion (e.g., the general recursive a la Church, or the Turing computable) 

really gained currency with Turing's work.

3 See, e.g., (Godel 1965b) or the 1964 Postscriptum to (Godel 1965a) where Godel
states, "In consequence o f later advances, in particular o f the fact that, due to A.M.
Turing's work, a precise and unquestionably adequate definition o f the general system 
now be given, the existence o f undecidable arithmetical propositions and the non- 
demonstrability o f the consistency of a system in the same system can now be proved 
rigorously for every consistent formal system containing a certain amount o f finitary 
number theory" (emphasis in the original). Details for such a proof can be found in 
(BCleene 1988).

6
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Although Turing is not credited for the introduction o f the nondeterministic 

machine that bears his name, we will see in Chapter 4 that it was, in fact, Turing who 

introduced nondeterminism and we will argue that he did so to make his account of 

computation more familiar and hence more intuitively compelling.

We will also see a related intuition surface in the 1960s with the birth o f 

complexity theory. Complexity theory began because the study of algorithms eventually 

had to "deal realistically with the quantitative aspects o f computing" (Hartmanis and 

Hopcroft 1971, p. 444). Oddly enough, this requirement initially drove researchers to a 

model o f computation more restricted than the Turing machine and, by extension, more 

restricted than the nondeterministic Turing machine. Nevertheless, the talk of 

constraining the Turing machine in the 1960s is reminiscent o f  Turing's original 

discussion o f nondeterministic computation insofar as each was intended to tie the formal 

to the actual and familiar.

2.3 Nondeterminism as a mathematically interesting construct

Third, nondeterminism can be viewed as a useful way of classifying problems.

The intuition here is rooted in a sense o f mathematical utility and has more to do with 

how hard it is to compute than what it is to compute.4 More specifically, if  we are given a

4 We should note that the Turing machine has always been studied as a purely
mathematical model. For instance, in Kleene's (1988) discussion o f Turning machines he
states that "so far as we [i.e., mathematicians] are interested in it," the behavior o f  a 
Turing machine can be completely described by either a table or a transition function. 
Indeed, the arithmetization o f the Turing machine, whereby machines are encoded by 
natural numbers, is the crucial step in developing interesting theory. The point we are 
making here, however, is that even if Turing machines themselves have always been 
studied as mathematical objects, there is an important difference between appealing to 
the Turing machine as a model o f computation and viewing it as an interesting, but

7
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robust model o f computation, like the Turing machine, and if we worry about how long 

it takes to solve problems, then nondeterminism seems to impose structure on the class of 

computable problems. In this light, nondeterminism is not meant to buttress a formal 

account o f computable nor is it intended to be a reflection o f what mathematicians, much 

less machines, actually do when they compute. Nondeterministic machines are a patently 

"unrealistic model o f computation" and they "break our chain o f ‘reasonable’ models of 

computation" (Papadimitriou 1994, p. 45, emphasis in the original). Moreover, the 

operation o f a nondeterministic machine is either described metaphorically or simply left 

to the "imagination" o f the reader.5 The point is not how such nondeterministic machines 

work, but rather that nondeterminism can be used as a something of a proxy for a class of 

problems-often described as those with "succinct certificates" or as "easily verified." In 

Chapter 3 we will see that mathematical intuitions about nondeterminism lead to an 

unexpected result about the manner in which nondeterministic algorithms compose. In 

Chapter 4 we will note with even greater surprise that the existence o f those problems 

now characterized by nondeterminism has led some to suggest that it is time to 

reformulate the Church Turing thesis.

2.4 Nondeterniinism as a physical process

Finally, nondeterminism can be understood in a physical sense as a random or

irreversible process. For example, we will see in Chapter 3 that Rogers argues that a 

deterministic algorithm should not depend on the roll o f a dice. Likewise, although

perhaps, inessential label for a class o f problems.
5 See, e.g., (J. D. Smith 1989, especially pp. 296-301) who talks about nondeterministic 

machines "guessing" what to do next, or (Bovet and Crescenzi 1994, p. 19) who struggle

8
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Minsky acknowledges the question whether "noise or other physical realities o f a 

probabilistic nature can be tolerated by the theory," he never addresses the question 

(1967, p. 299). Historically, intuitions about nondeterminism as a physical process 

helped define what computation was not. Even if the physical implementation of a 

computer was subject to vicissitudes like overheating vacuum tubes and faulty wiring, 

the theory o f the '50s and '60s was characterized by an assumption that each step in an 

algorithm would be completely and uniquely specified by the step that preceded it. The 

process o f computation was thus deterministic in the sense that it was completely 

reproducible and entirely predictable (at least theoretically). By excluding the physical 

sense of nondeterminism, researchers made room for an interesting theory that would 

otherwise be lost in the practical details of electrical engineering. In this respect, the 

development of theoretical computer science is like the development o f any other 

scientific theory insofar as it depends on a certain degree o f simplification and 

abstraction from the real world. But we will also see in Chapter 3 that some are now 

advocating the possibility o f exploiting physically nondeterministic systems for efficient 

solutions to problems that are thought to be theoretically intractable. In an ironic twist, 

the sense o f  nondeterminism that was once excluded from the theory might someday 

crack complexity theory's most difficult problems. It is an interesting question whether 

such a development would advance theory or obviate it.

3. Defining the Problem

There are four very different intuitions all lumped together under the rubric of

to imagine what it would look like for a nondeterministic machine to compute a function.

9
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nondeterminism. The multiplicity o f these intuitions does little to help us understand the 

relation between the formal and informal accounts o f the P versus NP problem. In fact, 

when we look closely at these intuitions we see our understanding o f nondeterminism 

beginning to splinter. For instance, how can we reconcile an intuition about extensional 

equivalence—an intuition that is intended to buttress the Church Turing thesis and plays 

on our common intuitions about algorithms— with intuitions about mathematical utility 

that have ultimately led some to suggest that the Church Turing thesis should be 

reformulated. Likewise, what should we say when our intuitions are motivated by the 

need to make the theoretical more familiar, while at the same time an assumption of 

nondeterminism leads to a model o f computation that is patently unrealistic. Finally, can 

we tolerate the possibility that intuitions about nondeterminism as a physical process 

might lead to a situation where theoretical intuitions are moot?

In this essay, we address such questions as we try to disentangle the various 

intuitions associated with nondeterminism in the conceptual development o f theoretical 

computer science. To do this we must address two issues. First, insofar as there is a 

received history to examine, we will find a presumption o f continuity but surprisingly 

little in the history itself to substantiate that presumption. That is to say, references on 

nondeterminism consistently point to the same names and papers, but when we trace this 

bibliographic trail backwards we find a host o f ellipses and inconsistencies. The classic 

papers on the subject do not always say exactly what we'd expect them to say given their 

place in the received history, and, moreover, there are papers that bear directly on our 

understanding o f nondeterminism that have largely gone unnoticed. Obviously, theory

10
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marches on, but making philosophical sense o f it is hard to do in the face o f its 

fragmented history. Second, the presumption o f historical continuity leads quite naturally 

to a presumption o f conceptual continuity. In particular, it might be said that the four 

intuitions about nondeterminism we identified above are really not so different, but rather 

that they are complementary and represent an ever sharper and more complete 

understanding of a single phenomenon. We will challenge that claim throughout this 

essay.

In the meantime, however, we can at least make a prima facie  case to rebut the 

presumption o f conceptual continuity. Even if we ignore the historical ellipses and 

incongruities, there is an obvious and true story to tell about the development of 

theoretical computer science. It begins in the 1930s with the study o f what could be 

achieved algorithmically or effectively. Research in the theory o f recursive functions and 

effective computability was vigorously pursued for some thirty years. Then, for a variety 

o f reasons, the theoretical emphasis shifted away from the study o f what could be 

computed in an absolute sense to a more finely grained study of computational 

complexity; the interesting question was no longer what could be computed, but rather 

how hard it would be to compute. Answers to these kinds o f questions depended on a 

measure of computation difficulty that was traditionally and quite naturally given in 

terms o f  number o f steps taken or the amount o f tape used by a Turing machine. For this 

reason, complexity theory is often presented as a natural extension o f recursion theory 

and, hence, a continuation o f the study of what can be achieved algorithmically. It turns 

out, however, that complexity theory is now driven by three variations to the traditional

11
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Turing machine model: there are nondeterministic Turing machines, oracle machines 

and alternating machines.

As we indicated above (and will argue throughout this essay), it is not clear that 

the variety o f intuitions associated with nondeterminism can be reconciled. A similar 

comment can be made about both oracle computation and alternating machines. For 

instance, oracle computation is performed by an otherwise normal Turing machine with a 

special additional state called the query state. At any point during its computation an 

oracle machine can enter the query state, compute certain characteristic functions in an 

instant, and then go on with its regular computation using the oracle information as 

needed. The idea is due to Turing (1965b) and was originally intended to illuminate 

implications about Godelian incompleteness. In complexity theory, however, oracle 

machines underwrite curious methodological theorems about solving the P versus NP 

problem.6 Today's use o f oracle machines in complexity theory is nothing like the use to 

which they were originally put by Turing. Moreover, it is hard enough to reconcile our 

intuitions about the P versus NP problem, much less meta-theoretic results about the 

problem, with the more pedestrian intuitions about algorithms that presumably underlie 

complexity theory. Obviously, there is a story to tell about how we got from the 

computability theory o f the '30s to the complexity theory o f today.

In a similar vein, the notion o f an alternating machine is not so much about

6 These results are quite striking, for they assert that neither simulation nor 
diagonalization can be used to settle the most general statement of the P versus NP 
problem. These two proof techniques are the bread and butter o f recursion and 
complexity theory, and without them it is hard to imagine how the P versus NP problem

12
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machines at all, but, rather, about the so-called computation trees we associate with 

Turing machines. We will discuss computation trees in more detail in Chapter 3, but for 

now it is enough to note that alternation is proposed as a generalization of 

nondeterminism whereby a Turing machine alternates between "existential" and 

"universal" behaviors in its computation. Intuitively, one might think o f alternation in the 

same way that one thinks of a winning strategy in a game like chess: do I have a move, 

such that for every possible counter move, I have another move etc. What is striking 

about alternating machines is that they lead to descriptions o f complexity classes (classes 

o f problems) that make no reference to machines. The notion o f alternation is clearly a 

long way from intuitions about machines.

The foregoing remarks are not intended to suggest that there is no coherent story 

to tell about the conceptual development of theoretical computer science, but rather that 

there is a story worth telling. We now outline the story we will tell.

4. An Outline of the Essay

The work we will do here is philosophical, and as such, we should not expect it to 

have an immediate impact on the existing or ongoing work in complexity theory. 

Likewise, the analysis o f the following chapters is not intended to be an indictment of 

theoretical computer science, a theory that has produced real theorems and has led to 

very tangible results.

But even if we concede that complexity theory has a life o f its own, the work we 

do here will have an impact on how we understand the broader issues addressed by

will be settled.
13
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theoretical computer science. For instance, our focus on the relation between the formal 

and informal accounts of nondeterminism will be familiar to those who have worried 

about other dualities in computer science; questions about syntax and semantics, use and 

mention, and the differences between the concrete and the abstract each play on the fuzzy 

relation between our intuitions and the formal mechanisms we use to model them. More 

generally, we will begin to see how big-picture questions about the development of 

nondeterminism resonate with long-standing issues from the philosophy o f mathematics, 

and how they ultimately shed light of the nature of computer science qua science.

Our immediate goals, however, are more modest. We will not presume to set the 

agenda for a comprehensive philosophy of computation, but we will take a good, albeit 

small, step in that direction by untangling the intuitions associated with nondeterminism.' 

Our work is part detective story and part philosophy; the first explicit, theoretical 

reference to the nondeterministic Turing machine is our smoking gun and the work we do 

to find it will reveal otherwise unnoticed tensions.

Before we can get to our main questions concerning the nondeterministic Turing 

machine, we will need to understand the deterministic model. Hence, in Chapter 2 we 

will devote ourselves to the review of some canonical results, beginning with Turing's 

solution to the Entscheidungsproblem and concluding with some of the arguments that 

initially convinced complexity theorists that the deterministic Turing machine was 

sufficiently robust model to support new theory. Although the proofs are all familiar, our 

efforts here are not perfunctory. Rather, by revisiting familiar results we remind 

ourselves o f the theorist's original motivation to view Turing machines as algorithms and
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we will bring the problems of Chapter 3 into sharper relief.

Next we turn to one of the main objectives o f this essay, that o f challenging the 

presumption o f conceptual continuity in the development of nondeterminism. In Chapter 

3 we will see just how far removed intuitions about the mathematical utility of 

nondeterminism are from intuitions about nondeterminism as a evidence for the Church 

Turing thesis. We will begin with a standard presentation of the nondeterministic Turing 

machine along with the usual proof of the equivalence between (unbounded) 

deterministic and nondeterministic machines. The equivalence proof is important because 

it suggests that, despite first impressions, nondeterministic machines do indeed have a 

place in a theory o f effective procedures. But when we turn our attention to resource- 

bound computation we will see that we can no longer take this equivalence for granted.

In fact, I will present an open problem from complexity theory where the received 

understanding of nondeterminism has strikingly counter-intuitive consequences.7 At first 

blush, the problem seems trivial—understanding why it is not reveals the tensions 

between the mathematical intuitions about nondeterminism and our common intuitions 

about algorithms. At the same time, however, we should not dismiss our non-solution as 

naive. Quite to the contrary, the non-solution follows from deeply held intuitions about 

composing algorithms. Should we embrace the nondeterministic Turing machine as yet 

another equivalent model o f computation or should we emphasize a counter intuitive 

distinction between deterministic and nondeterministic algorithms in order to support a

7 In particular, we will look at the NP versus coNP question which asks whether the 
class o f  problems solved by a nondeterministic Turing machine (i.e.. those problems 
whose solutions are easily verified) is coextensive with its complement class (i.e., those
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non-trivial theory of complexity? Philosophically speaking, we cannot have it both ways. 

Moreover, we will see that insofar as there is a received history o f computation theory, it 

does not help us here, for it fails to pin down the explicit introduction of the 

nondeterministic Turing machine, thus leaving us without a broader context to sort out 

these conflicting intuitions. Making sense o f nondeterministic algorithms turns out to be 

very difficult.

It will be clear by the end o f Chapter 3 that we face a dilemma: We can either 

ignore resource bounds when we articulate our notion o f computable or we can pursue a 

rich theory o f complexity, which happens to be premised on a model o f computation that 

has nothing to do with our pre-theoretic intuitions. In Chapter 4 we will push this 

dilemma deeper still. We will argue that the predicament we face is not just a 

philosopher’s problem, but rather the result o f conflicting theoretical motivations that 

have yet to be acknowledged. We will argue that received history does not adequately 

account for the origin o f the nondeterministic Turing machine. When we look more 

carefully, we will find that nondeterminism was first discussed by Turing in his seminal 

1936 work. The discovery is surprising given that the subsequent development in 

recursion theory focused so completely on deterministic computation; so much so that 

one might conclude that the idea o f nondeterministic computation had never even been 

considered. What is more surprising is that Turing appealed to nondeterminism to argue 

for the robustness o f his notion of computable. We will see that the intuitions were 

altogether different when nondeterminism was re-introduced as a conservative expedient

problems whose solutions are not easily verified).
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in automata theory some twenty years later. The intuitions change once again when 

nondeterminism turns out to be a non-conservative assumption in formal language theory 

before finally becoming the source of so much headache in complexity theory in the late 

1960s and early 1970s. It is no wonder that the nondeterministic Turing machine is the 

source o f so much philosophical confusion given that it has been put to so many disparate 

uses.

In the end, we will not find a philosophical solution to this dilemma. We will 

argue that the nondeterministic Turing machine, qua algorithm, makes no sense. But at 

the same time, we cannot simply dismiss the nondeterministic Turing machine out of 

hand given how much theory rides on the idea. Not only are there the famously (some 

might say notoriously) open questions from complexity theory, there are also inter- 

theoretic reductions among logic, model theory and complexity theory. So, for better or 

for worse, we are stuck with conflicting intuitions about nondeterminism and a 

philosophically inscrutable model o f computation. Still, in Chapter 5 we will see that the 

work we have done raking the muck will illuminate some interesting philosophical 

questions. For instance, by the time we are done it should be clear that one o f the main 

tasks for a more thorough-going philosophy o f computation will be explaining the shift 

from a theory motivated by intuitions about machines and what it means to compute, to a 

theory that is now focused on questions about patently unrealistic models o f computation. 

While some might see a natural evolution that requires no explanation, I hope that 

Chapters 3 and 4 will have shaken any initial confidence in a presumption o f conceptual 

or historical continuity. A comprehensive philosophy o f computation must also include
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the intellectual history o f the Church Turing thesis. Although Davis (1965; 1982; 1988a; 

1988b) and Webb (1980) have started that investigation, our discussion of Turing's 

nondeterministic machines complements their efforts. Finally, in Chapter 5 we will find 

ourselves in position to evaluate the claim that computer science is a new science. We 

will see interesting implications not only for the philosopher o f science, but also for the 

philosopher o f mathematics.

18
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II. Some Historical and Technical Background

0. Overview

Before we go into any more detail about the philosophical problems surrounding 

the nondeterministic Turing machine, we will discuss in this chapter the original 

motivations for the Turing machine. We will also review some o f  the standard results that 

first convinced mathematicians that the Turing machine was an appropriate model of 

computation and some of those results that later convinced complexity theorists that the 

Turing machine was an appropriate model of resource-bounded computation. We will 

also present the definition of a formal grammar (a notion we will discuss in Chapters 3 

and 4).

1. The Original Motivations for the Turing machine

It is well known that Hilbert once considered the problem o f deciding the validity 

o f  an arbitrary formula of the first order predicate calculus to be one of "fundamental 

importance" to mathematical logic (Hilbert and Ackermann 1950, p. 112). The so-called 

Entscheidungsproblem came to occupy center stage not only as a question about logic 

per se but also because Hilbert had seen how substantive mathematical questions could 

be reduced to questions about the validity of particular first-order sentences. Moreover, 

the problem demanded an algorithmic solution. There was nothing to gain in reducing a 

mathematical question to a decision problem that required inspiration to solve; but there 

was real potential in the possibility that validity might be decidable by the crudest of 

methods—methods that could be followed like recipes and applied mechanically, without
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insight. O f course, at the time the decision problem was posed, the formal sense of 

algorithm had yet to be worked out mathematically. As Davis (1988b) points out, without 

a formal notion o f algorithm, a negative solution to the Entscheidungsproblem would be 

doubly hard; while a positive solution might exploit existing intuitions about algorithms, 

it was not enough to establish that the decision problem was unsolvable by this or that 

mechanical procedure, but rather that the problem was unsolvable by any possible 

mechanical procedure. Anything short o f this would leave open the possibility that a 

richer sense o f algorithm might yield a solution to the Entscheidungsproblem.'

In 1936, Turing proved the decision problem to be algorithmically unsolvable.2 

The proof itself is a short, straightforward reductio: Turing observes that a positive 

solution to the Entscheidungsproblem would entail a positive solution to a problem that, 

on pain of contradiction, has no solution; hence the Entscheidungsproblem must be 

unsolvable. Of course, before Turing can reach this conclusion, he must argue for the 

existence o f an unsolvable problem and to do this Turing must pin down the sense of 

algorithm. Thus, the Turing machine enters the picture.

Turing asks us to compare the actions of working mathematician to those of a

1 Hilbert used just such an argument in 1938 to respond to Church's notion of 
computable and his proof o f the insolubility o f the Entscheidungsproblem, "Church's 
work proves, however, the non-existence o f such a recursive procedure: at least, the 
necessary recursion would not fall under the general type o f recursion set up by Church, 
who has given ... a certain precise formalization" (Hilbert and Ackermann 1950, p. 124, 
emphasis added).

2 Church actually solved the problem before Turing did, but it is has been well 
documented that the two worked independently (see Davis 1988b, pp. 159-161). 
Moreover, as we will see in the coming chapters, Turing's work was more influential than 
Church's. And so we focus on the Turing machine.
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machine. The idea is that just as human computation is a step-by-step process carried out 

symbolically on paper and pencil, so too we might imagine a machine that can scan and 

print symbols while working in a regimented, stepwise manner. Moreover, just as the 

human computer is limited— he can only keep track o f so many symbols at a time and he 

can remember only so much— we imagine that the Turing machine is likewise limited in 

its capacity. Thus the machine works with a finite number o f symbols and it depends on a 

finite number o f internal "states" in order to "remember" what it is doing. With these 

assumptions in place, Turing presents his model o f computation. We have a "machine" 

(the computer) with a segmented "tape" (the paper) running through it. Each segment of 

the tape can contain a single symbol and the machine is "directly aware" o f only one 

symbol at a time. Turing defines the configuration o f a machine at a given time as given 

by the internal state o f the machine together with the symbol it is scanning. Turing also 

contends that in order to compute, a machine need only be capable of a handful of very 

rudimentary behaviors. In response to a given configuration a machine might erase the 

scanned symbol, it might write a new symbol into the square, it might shift the tape one 

segment to the left or to the right, or it might change its internal state.

The model is austere, but more important, it is finite.3 That is, there is a finite 

number o f internal states, a finite number of symbols and a finite (and small) number o f

3 It is interesting to note that Turing imagined his machines working out computable 
sequences by printing out an infinite number o f terms in the sequence. Turing's machines 
never stopped working. These days we prefer to think o f working machines as those that 
always halt. The difference is not as great as it seems, however, for even if Turing's 
computations are o f an indefinite length, his computing machines are still described by 
"finite means."
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possible behaviors. Thus it is possible to describe the actions o f a given machine, and

hence the machine itself, in any number o f ways. Turing chooses to describe his

machines in terms of tables with columns to represent configurations and behavior? while 

each row represents a particular pair of state and symbol together with the machine's 

response to the current configuration (i.e., erase, print, move or change state).

Consider Turing's simple example:4

configuration hehavinr

q t, blank "I", q2, right

q2, blank "0", qh right

This table describes a machine with just two states that, when started in state qi reading a 

blank square, will print a "I," change its internal state to q2 and move one square to the 

right. In state q2 reading a blank the machine prints a "0" returns to state q, and moves 

one square to the right at which point it is again scanning a blank square in state q t. This 

machine prints the string 'TO 101010 ..." ad infinitum.

O f course, more complicated machines will have more complicated tables, but what is 

most important is that the tables themselves, no matter how complicated, can be 

transposed into a standard format. In fact, rather than using a table with rows and 

columns, we can concatenate the information in each row and present the table as a string 

o f  characters. In our example we can write something like:

qiSoSiq2R:q2S0S0qiR:

4 Our presentation is somewhat anachronistic in that the machine we have described 
prints its output on consecutive squares. Turing originally imagined his machines
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where S0, S,, R  stand for "blank," "1" and "Right," respectively. Finally, if we denote "q," 

by the numeral "10" and "q2" by the numeral "100" (in general q, will be denoted by a "I" 

followed by i "0"s), "S0" by "20", " S f  by "200", "R" by "3" and by 4 we can present 

our machine as a numeral, namely:

I020200I003410020201034 

Turing calls such numerals "description numbers." The idea is that every machine will 

have at least one description number, while each description number will pick out a 

unique machine. The standardization and arithmetization of machine tables leads to 

several remarkable facts: the computable sequences turn out to be enumerable; machine 

descriptions can be presented as input to other machines; and there exists a "universal" 

machine that can simulate the behavior o f  any possible Turing machine.5

Now Turing can argue for the existence o f an unsolvable problem. Fie begins by 

introducing the notions o f circular and circle-free machine: A machine is circular if it

printing on alternate squares and using the intervening squares for "scratch work."
5 The first two facts are immediate consequences of Turing's arithmetization (the 

cardinality results implicit in the first fact also foreshadows the diagonalization Turing 
will use to establish the existence of undecidable problems). The third fact, however, is 
quite surprising. Indeed, it is far from obvious that one machine could do the work o f any 
other machine. But as Davis (1988b, p. 159 ) points out, the universal machine is another 
immediate consequence of Turing's analysis. Machine tables are really just lists of 
instructions and according to those instructions each machine will execute a different 
algorithm. The universal machine, on the other hand, executes a very simple algorithm, 
namely, follow those instructions encoded by this description number. Except for the 
decoding (a trivial step), Turing describes such a machine in detail. According to Davis, 
the "apparent implausibility" o f such a universal machine together with the fact that 
Turing was actually able to describe it provides a "significant vindication" o f Turing's 
analysis o f computation. Davis also suggests that Turing's universal machine anticipates 
both the stored program computer and the notion o f an interpretive program, and that it 
anticipates the blurred boundaries between hardware and software and program and data.
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never prints more than a finite number o f symbols (the idea is that a machine that prints 

only a finite number o f  symbols must eventually repeat some configuration o f state, 

symbol and scanned-square). Otherwise, the machine is circle-free. Next, Turing uses a 

diagonal argument to show that there cannot be an algorithmic process for determining 

whether a given machine is circle-free, for if  there were such a process we could compute 

the sequence P'=q>w(«) (where cpn(ri) is the digit in the nIh sequence computed by a 

circle-free machine) which leads to a subtle contradiction: Suppose there were a machine 

D to decide circularity. To compute P' for some number n, we construct a composite 

machine H  that feeds successive description numbers to D (starting with 0) until n circle- 

free machines have been identified. At this point the /7th machine is simulated (via the 

universal machine, another component o f H) until it prints its «th figure—which it is 

guaranteed to do since it is a circle-free machine— and H  outputs that figure as cpn(fr). H  

is circle-free by construction (since each component machine is circle-free) and it has 

some description number k. So H  must compute cpk(k). It is obvious that H  can simulate 

the other k-\ machines as it prints the first k- 1 digits of P', but how does //sim ulate itself 

when it is time to print the k h digit? As Turing notes, there is no explicit instruction for H  

to compute the klh digit, "but the instructions for calculating the [£*h digit] would amount 

to 'calculate the first [k] figures computed by H and write down the [^h]’ "(Turing 1965a, 

p. 133). There is, so to speak, a regress in simulation. <p&(&) is "never found," and contrary 

to the assumptions underwriting our construction, H is  circular. Thus Turing concludes 

that there can be no algorithmic process for deciding circularity.

With this undecidable problem in hand, Turing presents another problem and
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argues that a solution to it would entail a solution to the problem o f deciding circularity. 

Although Turing correctly identifies the problem o f deciding whether an arbitrary 

machine will print a given symbol as undecidable, his proof is confusing.6 Nevertheless, 

the undecidability o f this printing problem allows Turing to prove, finally, that the 

Entscheidungsproblem is unsolvable. As we indicated above, Turing argues that a 

positive solution to the Entscheidungsproblem would entail a positive solution to the 

printing problem. The details o f the proof are tedious, but again straightforward (we will 

see essentially the same construction again in Chapter 4). The underlying idea is that the 

operation of a Turing machine on a given input can be described logically. In particular, 

it is possible to construct (effectively) first-order formulae that codify the machine's 

behavior and the contents o f its tape. Turing begins by introducing a variety o f predicates 

to represent, for example, the individual cell being scanned at a particular point in the 

computation, the contents o f that cell, the configuration of the machine at a particular 

point in the computation, and a handful o f conditional statements to represent the

6 Following (Post 1965) Davis notes, "the argument is a bit complicated" (Davis 
1988b, p. 136). Although Turing seems to be using a reduction, Davis points out that the 
problem o f deciding circularity is o f a higher degree o f unsolvability than Turing's 
problem o f deciding whether an arbitrary machine will print a given symbol and hence 
circularity cannot reducing to printing. A simple diagonalization yields an easier (and 
correct) proof o f  the latter problem's undecidability: Following Davis (1988b), suppose 
there were an algorithm to determine whether a given machine prints, say, a "|". Then we 
can construct another machine, M, which will take description numbers as input and print 
a "|" iff the described machine does not print a Now what happens when M  takes its 
own description number as input? M  prints a "|" if  and only it does not print a "|”—a 
contradiction. Hence, there can be no algorithmic procedure to decide whether an 
arbitrary machine will print a given symbol.
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machine's instructions.7 Turing uses these formulae to construct another existentially 

quantified formula which asserts that "in some complete configuration of M, (i.e., 0) 

appears on the tape" (Turing 1965a, p. 146). It then follows by an inductive argument that 

the formula is provable if and only if  the machine M  does, in fact, print a zero. So, if  we 

could decide derivability in a formal system (i.e., if we could decide the validity of a 

conditional statement relating the axioms of a formal system with the theorem in 

question) then we could decide the printing problem, which we cannot do, so we cannot 

solve the Entscheidungsproblem.

2. The Turing Machine as an Unbounded Model of Computation

The immediate effects of Turing's work were clear: Hilbert could not hope to 

answer every mathematical question and these undecidability results together with the 

Godel incompleteness theorems severely undermined the formalist program in 

mathematics. But more important, Turing's work was one o f the first attempts to give 

precise mathematical content to notions like computable, algorithmic and effective which 

before had been only vague, intuitive notions. Consequently, attention was focused on a 

host o f arguments for the adequacy o f the Turing machine as a formaL model o f 

computation. As we will see in Chapter 4, these arguments were as much philosophical

7 For each instruction Turing introduces a conditional statement universally quantified 
over complete configurations (i.e. tape contents +  machine configuration) and tape 
positions. Intuitively, the antecedent represents the state o f affairs before the instruction 
is executed (e.g., scanning symbol s in cell x, in state q) while the consequent reflects the 
updated tape/machine configuration after the instruction is carried out (e.g., scanning 
symbol s' in cell x-1 in state q'). We should also note that Turing's original formulation o f 
these conditionals was a bit loose— so we will pass over the particulars o f  Turing's 
presentation.
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as mathematical. In the meantime, however, we will look at some o f the mathematical 

arguments.

As we have noted, Church was the first to solve the Entscheidungsproblem. 

Turing learned of Church's work as he was completing his own and he felt compelled to 

add an appendix outlining the equivalence between Turing-machine computability and 

the notion o f effective calculability implicit in Church's system of ̂ .-definable functions. 

Quite apart from the intuitive appeal of Turing machine, we will see in Chapter 4 that it 

was crucial that Turing's work did not fall short of extant accounts o f computation. The 

fact that Turing-machine computability was provably equivalent to Church's sense of 

"effective calculability" was, perhaps, the most compelling mathematical support for the 

Turing machine. Indeed, similar results led Church to comment in 1935: "[The fact] that 

two such widely different and (in the opinion o f  the author) equally natural definitions of 

effective calculability [i.e., the X-definable and general recursive functions] turn out to be 

equivalent adds to the strength of the reasons adduced below for believing that they 

constitute as general a characterization o f this notion as is consistent with the usual 

intuitive understanding o f it" (Church 1965, p. 90). Adding another equivalence result not 

only bolsters our faith that we have identified a general characterization o f computable, 

but also has the reciprocal effect o f legitimizing the Turing machine as a model o f 

computation.

There were also more direct mathematical justifications for the model itself. For 

instance, there is no loss in generality in restricting Turing machines to a linear tape even 

though human computers use two-dimensional work spaces. Kleene outlines the proof:
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We imagine a two-dimensional work space "sufficiently regular in structure so that the 

[human] computer will not become lost in it during computation" (1952, pp. 380-381). 

So, we might think of a grid-paper where from each cell in the grid there will be only 

finitely many directions (e.g., up, down, right, left, diagonally etc.) in which we can 

move to different cells in the grid. Since the number o f different motions is finite, the 

number o f cells reachable from a given cell is countable. Next, Kleene argues that for 

"any readily imagined symbol space" it is possible to enumerate all the cells in such a 

way that for each direction o f movement there is a computable function that enumerates 

the cells reachable from a given cell in that direction. This function is then used to index 

two-dimensional grid-positions into a linear tape.s In a similar vein, well known 

conversions between numeral systems demonstrate that the restriction to monadic (in the 

unbounded case), or dyadic notations does not compromise the ability o f the Turing 

machine with respect to a human computer who might use a richer set of symbols. 

Finally, there were competing versions of the Turing machine (cf. Post 1965) where the 

notion o f an atomic act differed slightly from Turing's; thus it is reasonable to assume 

that the machine behaves discretely, in a step-by-step manner, even if the "atomic" acts 

are actually composite.

In addition to the foregoing mathematical considerations, there were also 

surprising methodological affinities between the approach taken at Princeton and the one 

developed independently by Turing that would have augured well for the Turing machine

8 The same idea is implicit in the programmer's view of a  two-dimensional (or n- 
dimensional) array as a one-dimensional array o f arrays (or o f an array o f arrays o f  arrays
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as an adequate model o f  computation. For instance, Kleene reports that immediately after 

Church proposed the identification o f the effectively calculable with the ^.-definable 

functions, he "sat down to disprove it [i.e., the identification] by diagonalizing out o f the 

class o f  ̂ -definable functions. But quickly realizing that the diagonalization cannot be 

done effectively, [he] became an overnight supporter" (Kleene 1981, p. 59). Although 

Turing was probably not aware o f Kleene's overnight conversion, Turing was likewise 

concerned that an obvious diagonalization out o f the computable sequences might 

undercut his work. But Turing concluded, like Kleene, that such a diagonalization could 

not be performed effectively. Not only does the "correct" application o f the diagonal 

process lead to Turing's proof for the existence of an undecidable problem, but also his 

concerns must have resonated with those already working out the mathematical sense of 

effective calculability at Princeton. Turing's work would have seemed familiar even if the 

approach he actually took was quite different from the one taken on the other side of the 

Atlantic.9 Moreover, when he made it to this side o f the Atlantic, the work Turing did at 

Princeton extended existing work quite naturally. For example, before Turing arrived in 

the summer o f 1936, Church and Kleene had already given equivalence proofs 

identifying the class o f 1-definable functions with the class o f general recursive functions

of arrays...).
91 do not mean to overstate the case here, but I imagine there was a substantial 

difference in mathematical temperament between Turing (before he went to Princeton in 
the summer o f '36) and those working with Church. Turing was notoriously sloppy in his 
work, while people who knew Church have described him to me as exceedingly precise. 
Nevertheless, it is easy to imagine that Turing's work was favorably received by Church 
and others because they could recognize that Turing was doing things the right way even 
if  his proofs were riddled with mistakes.
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proposed by Herbrand and Godel. Kleene (1981) recalls how this work on ^.-definability 

had led him to his famous 1936 normal form theorem for general recursive functions: He 

thought of the computation of general recursive functions in terms o f "stages" where each 

stage could be represented by a Godel number, with the whole process admitting a 

primitive-recursive characterization. By applying a least-number operator it is possible to 

recognize, primitive-recursively, a "terminal" stage in the computation at which point the 

value o f the function can be "extracted" primitive-recursively from the Gddel number. 

Thus we establish the normal form theorem that each general recursive function is 

obtainable from primitive recursive functions with (exactly) one application o f the 

Kleene minimization operator (Kleene 1981, p. 60). Kleene's approach must have made 

an impression on Turing, for he cites Kleene's work and adapts it quite naturally to his 

1937 demonstration that every Turing-computable function is general recursive. In fact, 

Turing proceeds exactly as Kleene had: he describes an arithmetization of complete 

configurations (the "stages" in Turing-computation) and proves that the operation o f the 

machine can be described primitive-recursively. Then Turing uses Kleene's minimization 

operator to identify the point (the "terminal" stage) at which the output can be read from 

the tape (the "extraction").

The early equivalence results relating the general recursive functions, the X- 

deflnable functions and the Turing-computable sequences are, perhaps, the most 

compelling mathematical evidence for the Church-Turing thesis, and by implication, 

evidence that the Turing machine itself is an adequate model o f computation. But it is 

likewise compelling that, working independently, Turing confronted the same kinds o f
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problems as those working in the States and that he was able to adapt extant work so 

directly once he became aware o f it. Even if Turing's work was something of a 

"rediscovery" it is still remarkable that it could piggyback so easily on the mathematical 

evidence that was already supporting Church's work.

3. The Turing Machine and Resource-Bounded Computation

As we will see in Chapter 4, by the time the Turing machine had become 

entrenched as the de facto  model o f computation, it was becoming clear that if  the theory 

of computation was to have any connection to real computing then it would have to take 

resource-bounds into account. Once again, the Turing machine proved to be a compelling 

model; the transition from one complete configuration to the next was a natural analogue 

for a "unit o f time" while the machine's tape cells were readily viewed as "units o f 

space." Moreover, the Turing machine was robust in a resource-bounded sense, both in 

terms of modifications o f the model and with respect to other models o f computation. For 

example, in their classic 1965 paper, Hartmanis and Steams initiate the theory of 

computational complexity using the multi-tape Turing machine as their model of 

computation because "it closely resembles the operation o f a present day computer” 

(Hartmanis and Steams 1965, p. 287). Indeed, with respect to the manner in which 

information is retrieved, a Turing machine that accesses several different tapes 

simultaneously is much more like a modern computer than a single-tape Turing machine 

that must access information in a strictly sequential manner. More important, such multi

tape machines are no more powerful than single-tape machines in unbounded contexts, 

but as Hartmanis and Steams point out, the extra tapes do make a difference when we
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worry about how long the computation takes (multi-tape machines are faster). Still, even 

in a time-bounded setting, it turns out that it makes no theoretical difference whether we 

think in terms of a Turing machine working with multiple tapes or whether we stick to 

the model of a single-tape machine. Hartmanis and Steams prove that a single-tape 

machine can simulate a multi-tape machine with at worst a quadratic increase in the time 

o f  computation. The idea is to store the n symbols currently scanned on each of the n 

tapes o f a given multi-tape Turing machine, MT, in a contiguous block of n cells (called 

it the 0 block) on the single tape of a machine ST. The symbols immediately to the right 

(or left) o f each o f the n scanned symbols o f M T  are stored in another contiguous block to 

the right (or left) o f the 0-block on the ST 's tape, and so on. With M Ts transition table 

"hard-coded" into the control, ST  does the following for each of M Ts moves: First, ST  

scans the symbols in the 0 block to determine M Ts next state and what M T  will do to 

each tape (e.g., print, erase, shift left or right). Next, ST  prints the appropriate symbols in 

the 0-block; then starting from the leftmost printed square, ST  sweeps across its tape from 

left to right and for each tape M T  shifts to the right, ST  shifts the corresponding symbols 

from each block into the next block to the right. Upon reaching the rightmost square, ST  

sweeps back across its tape, repeating the process for each tape MT shifts to the left. 

Finally, ST  returns to the 0 block and starts simulating AfTs next move. The number of 

moves ST  makes is linearly proportional to the length o f the tape it must traverse which 

itself grows in linear proportion to the number o f moves MT makes. So if M T  makes t 

moves, each of which requires roughly t moves for ST  to simulate, then ST  makes, at
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•) mmost, r  moves.

In a similar vein, Hartmanis and Steams show that a Turing machine with access 

to a 2-dimensional tape can be simulated by a Turing machine with a linear tape with 

only a quadratic loss o f efficiency. This result is the time-bounded analogue of Kleene's 

proof and it is important for similar reasons. Just as Kleene's proof suggests that the 

Turing machine is a sufficiently general model o f  computation, Hartmanis and Steams' 

so-called square law suggests that the Turing machine is sufficiently robust with respect 

to time-bounds. As Papadimitrou puts it, these results give us reason to believe that 

"there is no conceivable ‘realistic’ improvement on the Turing machine that will increase 

the domain o f languages such machines decide, or will affect their speed more than 

polynomially" (Papadimitriou 1994, p. 3 1).

Finally, much like the equivalence results o f the '30s, there are time-bounded 

equivalences relating the Turing machine to different models o f computation. For 

example, in 1963 Shepherdson and Sturgis introduced the unlimited register machine as 

another idealized model o f computation. A register machine consists o f a program and

10 N.b., complexity theorists are not interested in constant terms and linear factors. The 
constants are discounted because complexity theorists are worried about rates o f  growth 
(i.e., the proportional contribution a constant value makes to the time it takes to compute 
decreases as the length o f computation time increases), while the linear factors are 
ignored on the basis o f a "linear speed up theorem" which trades on the fact that 
computation time can always be improved at the cost o f a more complex tape alphabet, 
or a greater number o f internal states.

Also, we should note that as far as the complexity theorist is concerned, a quadratic 
loss o f  efficiency is an acceptable cost. In fact, as we will see in Chapter 4, polynomial 
complexity (o f any reasonably low degree) has been equated with tractability. 
Exponential growth rates, on the other hand, make problems hard. As any undergraduate 
logic student knows, it is easy to determine whether a propositional formula of 3 atoms is
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denumerably many registers each o f which can store a natural number (only finitely 

many registered are used during the execution o f a program). A program is sequential list 

o f instructions which take register indexes as arguments and perform basic operations on 

register contents. Shepherdson and Sturgis introduce only six kinds o f  instruction: there 

are instructions for incrementing, decrementing and clearing registers, along with an 

instruction for copying the contents o f one register into another, and two jump 

instructions to permit non-sequential flow of control in the program. (One jump is 

conditional depending on whether or not a given register is empty, the other jump is 

unconditional).

It turns out that the functions computable by register machines are exactly the 

functions that can be computed by a Turing machine. For Shepherdson and Sturgis this 

equivalence permits a more perspicuous proof o f the equivalence between the partial 

recursive functions and the Turing-computable functions. At the same time, however, 

they recognize the register machine as a significant step in "the ‘rapprochement’ between 

the practical and theoretical aspects o f computation" (Shepherdson and Sturgis 1963, p. 

218). In fact, subsequent treatments o f the register machine often emphasize the affinities 

to actual computers; most writers are quick to point out the obvious resemblance between 

the register machine "architecture" and RAM memory, and some even go so far as to talk 

about "program counters" and designate specific registers as "accumulators." Likewise, 

the instruction sets have been augmented to the point that they resemble the assembly- 

level instructions o f  existing computers; unlike Shepherdson and Sturgis' spartan set,

satisfiable; it is practically impossible to do the same for a formula with 6 atoms.
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writers now include higher-level arithmetic instructions (e.g., add, subtract, divide), 

indirect register addressing and more complex jump instructions.

The net result is another equivalence relating a seemingly more concrete model o f 

computation to the Turing machine. Most see this equivalence as further evidence for the 

Church Turing thesis. Moreover, it turns out that a Turing machine can simulate a 

register machine with only a polynomial loss o f efficiency. The trick here is to use a 

contiguous block of tape cells containing <index:content> pairs to simulate the more 

flexible memory of the register machine (along with routines for shifting and copying as 

the contents o f each register grow and shrink). The register machine program can then be 

"hard-coded" into the Turing machine control (assigning a group o f internal states to 

implement each basic register machine instruction as a Turing machine subroutine). As 

before in the single-tape simulation o f the multi-tape machine, the Turing machine 

simulation o f each register machine instruction might require several steps, but in 

general, the time it takes to simulate each step the register machine takes will be linearly 

proportional to the amount of tape needed to store the register contents (which will never 

grow more than linearly for each register machine instruction executed). Hence, if a 

register program executes t instructions (each instruction requiring one unit o f time to 

execute) then a Turing machine will require roughly r  for its simulation.

The fact that a single-tape Turing machine can simulate seemingly more powerful 

machines together with the fact that it can simulate altogether different models o f 

computation is compelling evidence for the Church Turing thesis. Likewise, the fact that 

these simulations result in only a polynomial loss o f efficiency is compelling evidence
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that the Turing machine is also the right model o f resource-bounded11 computation. The 

similarity here is not accidental: A robust model o f resource-bounded computation makes 

for a more robust model o f computation generally. The nagging exception is 

nondeterminism. As we will see in the next chapter, although nondeterminism adds no 

power to the unbounded Turing machine (more evidence for the Church Turing thesis), it 

is seems that deterministic simulation of a nondeterministic machine results in an 

exponential loss o f efficiency (perhaps evidence against the Church Turing thesis?).

4. Formal Grammars

The last thing to do before we try to tackle the more difficult questions about 

nondeterminism is to introduce the definition of a formal grammar. The notion is due to 

Chomsky (1959) and, as we will see in Chapter 4, it is at the heart o f another important 

collection o f equivalences. Intuitively, a grammar is a set o f rules we apply to words, 

noun-phrases, verbs-phrases, etc. in order to form (or identify) grammatically correct 

sentences. Likewise, a formal grammar is a 4-tuple (V, T, P, S) where V and T are 

disjoint finite sets o f variables (denoting syntactic categories) and terminal symbols 

(words), P is a finite set o f productions (rules) and S is a specially designated element of 

V (the "start" symbol). Productions are o f the form A -»a where A is a variable and a  is a 

concatenation o f elements from V u T .  For example, we might think o f a simple 

language with only two "words," a and b and two syntactic categories A (for a-phrases) 

and B (for b-phrases) where the only grammatically correct sentence are those that begin

11 Even if all our discussion has focused on time-bounded computation, we speak more 
generally of resource-bounded computation since a  time bound implies an equal space
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with at least one a and end with twice as many b's. Thus we might define the 

corresponding grammar G as:

<{A, B}, {a, b}, {S—»AB, S—>aSbb, A-»a, B—>bb}, S>.

So, if we think o f productions as derivation rules, we can derive the sentence "abb" by 

starting with S, applying the production that yields "AB," which, in turn, yields "aB" by 

the third production, before we finally derive "abb" by the fourth production. Similarly, 

to derive "aabbbb" we would start with S and apply the second production to get "aSbb" 

at which point we would follow the steps o f the last example to arrive at "aabbbb." It 

should be clear, at least informally, that G generates all and only the sentences o f our 

simple language. Taking "=>G" to be the reflexive and transitive closure o f f r o m  our 

production rules, we say that the languages generated by G is all the sentences w such 

that S=>Gw.

Although the notion o f a formal grammar was introduced long after Turing 

machine had been accepted as an adequate model o f computation, it still had a profound 

influence on the development of theoretical computer science. In particular, a handful of 

machine-grammar equivalences were explored in the late fifties and early sixties. It 

turned out that by placing certain restrictions on the productions of a grammar (e.g. that 

each production be of the form A—>tB or A-»B where t is a terminal symbol), it was 

possible to relate the generative capacity o f various grammars with the power o f various 

abstract machine models to recognize the sentences thus generated. As we will see, 

questions about such equivalences led to surprising questions about nondeterminism.

bound (but not conversely).
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III. Philosophical Concerns about Nondeterministic Algorithms

0. Overview

In Chapter 1 we noted that there are at least four different ways to think about 

nondeterminism. We suggested that this variety o f intuitions betrays a host o f 

philosophical tensions, but we also recognized that a long tradition in theoretical 

computer science has implicitly established a presumption o f continuity in both the 

historical and conceptual development o f nondeterminism. In this chapter we will 

examine an open question from complexity theory where the received theoretical 

understanding runs counter to some very natural intuitions about algorithms. We will 

point to a specific intuition about the workings of a nondeterministic machine as the 

source o f these tensions and then sketch a brief history o f  nondeterminism in theoretical 

computer science. Finally, we will see that more recent theoretical developments are 

unlikely to resolve these philosophical tensions.

1. Introduction

This chapter is motivated by a single footnote in Rogers' classic text, Theory o f  

Recursive Functions and Effective Computability. The footnote comes on the second 

page where Rogers discusses discrete stepwise computation and deterministic operation 

as two o f five "essential" features of the informal notion o f algorithm. He notes, "In a 

more careful discussion, a philosopher o f science might contend that *4 [i.e., discrete 

stepwise computation] implies *5 [i.e., determinism]. Indeed, he might question whether 

there is any real difference between *4 and *5" (Rogers 1967, p. 2).
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When we engage in that "more careful discussion" we must ask ourselves why 

Rogers (or anyone for that matter) would regard the implication between discrete 

stepwise computation and deterministic computation as philosophically obvious when 

even a cursory glance at a text in complexity theory seems to provide a counter example: 

the nondeterministic Turing machine, like the deterministic machine it generalizes, is 

presented as a discrete stepwise model o f computation and yet it is clearly not 

deterministic. Should we conclude that discrete stepwise computation has nothing to do 

with determinism, or that nondeterminism has nothing to do with Rogers' informal 

characterization of algorithm?

Neither option is attractive. Rogers motivates his discussion o f algorithms with an 

analogy to digital computers. He claims that discrete stepwise operation corresponds to 

the "digital nature" o f real computers, and that the sense of determinism— that is, not 

having to "resort to random methods or deices, e.g. dice”— is reflected in the 

"mechanistic nature" o f digital computers (Rogers 1967, pp. 2-3). The analogy is 

compelling. Indeed, the paradigm of digital computing completely depends on an "edge- 

driven" synchronous architecture and the ability to guarantee state transitions with 

absolute certainty. It is hard to deny Rogers' claim that *4 implies *5 when intuitions 

about discrete stepwise operation, determinism and the notion o f an algorithm are tied 

together in the context of real computing.

At the same time, however, we cannot baldly assert that the study of 

nondeterminism has nothing to do with the study of algorithms. Quite to the contrary, the 

notion o f a nondeterministic algorithm is ubiquitous in complexity theory. The P=NP
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question—the most celebrated open question o f theoretical computer science— is a

question about the difference (or lack thereof) between deterministic and

nondeterministic algorithms. Moreover, nondeterministic algorithms really are presented

as algorithms. For example, consider how Bovet and Crescenzi (1994, p. 70) describe a

nondeterministic algorithm to decide whether a Boolean form ula,/ consisting o f n atoms

is a member o f SATISFIABILITY, the language o f all satisfiable Boolean formulae:

A nondeterministic algorithm for SATISFIABILITY can be obtained by guessing 
any of the 2" assignments of values to the n variables o f f  and verifying whether it 
satisfies f:

begin {input:J)
guess t in set of assignments of values to the n variables off, 
if t satisfies/ then accept else reject; 

end.

The are no scare-quotes or disclaimers in the foregoing passage. The use o f the Pascal

like language is deliberate and is intended "to provide a more succinct description of 

algorithms" (Bovet and Crescenzi 1994, p. 47, emphasis added). Such descriptions of 

nondeterministic algorithms appear side-by-side with, and are embedded in, deterministic 

algorithms specified in the same language. Except for the "guess" operator, there is no 

difference in the presentation of deterministic and nondeterministic algorithms.

There is a dilemma here with no easy solution. Although Rogers excludes those 

methods that resort to "random devices" from his informal characterization o f an 

algorithm, the "guessing" o f a nondeterministic algorithm is not random, hence, the sense 

o f  nondeterminism we might infer from Rogers' discussion does not help us. Our 

dilemma is rooted in a much deeper and more subtle tangle o f intuitions. We will see
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below that the nondeterministic Turing machine has been presented as further vindication 

o f the Church Turing thesis and that intuitions stemming from the evidence of 

extensional equivalence naturally resonate with intuitions about what it is to be an 

algorithm. At the same time, however, many of the open problems in complexity theory 

trade on intuitions about nondeterminism as mathematically useful description o f those 

problems. We will argue that understanding why one such problem remains open 

demands that we give up our intuitions of what it means to be algorithmic. We will also 

see that the tension between these intuitions has been obscured by a third intuition that 

supports a view o f complexity theory as a study of those questions that affect real 

algorithms and real computers.

2. Getting to the Center of the Tangle

In this section we will do our best to present the nondeterministic Turing machine 

in the light o f the received theoretical view. In other words, we will try to present the 

nondeterministic Turing machine as it might be presented in an introductory text book on 

the theory of computational complexity. Although the presentation in this section will be 

deliberately a-historical, it will help us uncover the conflicting theoretical intuitions 

about nondeterminism.

The study of computational complexity begins with the study o f computation and 

the (deterministic) Turing machine is most often presented as an intuitively appealing 

model o f  computation (cf. Papadimitriou 1994, pp.!9ff). Various equivalencies between 

the Turing machine and other models o f computation are demonstrated and adduced as 

evidence for the Church Turing thesis: the claim that our intuitive notion o f  algorithm
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can be identified with the Turing's model o f computation (cf. Bovet and Crescenzi 1994, 

p. 25; Smith 1989, p. 299).

At this point we might ask whether extending our model o f computation will 

affect the class of Turing computable functions. For example, in fonnal language theory 

Turing machines are used to decide membership in a language (i.e., used to compute a 

characteristic function for a language like SATISFIABILITY), and it is often helpful to 

relax the demand that the next move be uniquely determined by the current state and 

input. As we indicated in Chapter 1, we define a nondeterministic Turing machine 

exactly like a deterministic machine except that the current state and input does not 

uniquely determine what the machine will do next (i.e., what state it will assume,what 

action it will perform). It is hard to imagine how such a machine might work given that 

its behavior is determined by a transition relation rather than a transition function.

Indeed, text books rarely described how such nondeterministic machines really work. 

Instead, there is a handful of related heuristics. Some writers invoke metaphors about the 

machine "guessing" what to do next (cf. Bovet and Crescenzi 1994; Smith 1989, 

pp.299-302), while others appeal to a sense of parallelism (cf. Bovet and Crescenzi 1994, 

p. 48; Papadimitriou 1994, p. 172). We will try to motivate nondeterminism in terms of 

so-called computation trees (cf. Bovet and Crescenzi 1994; Papadimitriou 1994). The 

common thread in each o f these stories is that the machine always guesses correctly, 

always computes efficiently, always follows the accepting branch in a computation tree if 

one exists.

Let us consider nondeterminism in terms o f  a computation tree. A computation
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tree is a directed graph where the nodes represent a particular configuration of the state, 

input and tape contents at a particular step in the computation o f a nondeterministic 

Turing machine. A single node—the root—represents the initial configuration o f the 

machine. Each (directed) edge represents a transition to one o f the (finitely many) 

different configurations the nondeterministic machine might realize on the next step. The 

leaf nodes represent all the possible final configurations o f the machine. On any given 

input the computation tree might have several distinct branches, some of which lead to 

acceptance and others o f which do not. So, to avoid ambiguous results on a given input, a 

nondeterministic machine is said to accept an input if there is at least one "accepting 

branch" in the computation tree, otherwise the input is rejected. In this context we can see 

how intuitions about guessing and parallelism are related; to say that a nondeterministic 

machine guesses is to say that it makes exactly the right choices so that it assumes the 

sequence o f configuration reflected on the accepting branch of the computation tree (if 

such a branch exists). Likewise, the intuitions about parallelism are rooted in the image 

o f a nondeterministic machine somehow surveying all the branches in the computation 

tree at once, but manifesting only the behavior o f the accepting series o f configurations 

(if such a series exists). By contrast, the computation trees we might associate with 

deterministic machines are more like computation twigs; in a deterministic computation 

there is a single path from the initial configuration to the final configuration (either 

accepting or rejecting) without any branching whatsoever. There is no guessing, no 

implicit parallelism.

To return to the example of a nondeterministic Turing machine deciding the
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language SATISFIABILITY, we can think of the each node in the computation tree 

representing the choice the machine must make between assigning a value of "true" or 

"false" to a particular atom. Thus, if  the input formula has n atoms, the computation tree 

will have 2" different branches. Whether the nondeterministic machine surveys all these 

branches in parallel, or whether it "guesses" a satisfying assignment, the machine accepts 

if and only if there is branch in the tree that corresponds to a satisfying assignment. By 

contrast, again, we can think of the deterministic computation twig as corresponding to a 

sequential enumeration o f the 2" different assignments with each assignment checked in 

turn to see if it satisfies the input formula. Although it must survey an exponential 

number o f assignments, the deterministic Turing machine will eventually find a 

satisfying assignment if one exists.

It might seem that allowing the machine to "guess" would yield greater 

computational power but, as it happens, nothing changes; any language decidable on the 

extended model turns out to be decidable on the original model. In other words, given a 

nondeterministic Turing machine it is always possible to construct a deterministic 

machine that will "simulate" the nondeterministic machine. The proof exploits the fact 

that the behavior of a nondeterministic machine is determined by a finite  transition 

relation. Suppose we have a nondeterministic machine to decide whether a string o f input 

is a member o f a given language. Given a description o f the transition relation o f the 

nondeterministic machine, a deterministic machine can, on a given input, systematically 

work its way through the branches o f  the nondeterministic computation tree using its tape 

to keep track o f the choices the nondeterministic machine can make. By looking at all the
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choices the nondeterministic machine can make after I step, 2 steps, 3 steps and so on, 

the deterministic machine will eventually survey all the choices that could lead the 

nondeterministic machine to accept. The deterministic machine will accept the input if 

and only if  there is an accepting branch in the nondeterministic computation tree. Thus, 

the deterministic and nondeterministic machine compute the same characteristic function.

Here we see more evidence for the Church Turing thesis (see, e.g., (Bovet and 

Crescenzi 1994, p. 20) or (Hopcroft and Ullman 1979, pp. 159-166)). The fact that a 

nondeterministic machine is no more powerful than a deterministic machine with respect 

to the class oflanguages it can decide is compelling. Moreover, we find that the 

heuristics we have used to understand the behavior of a nondeterministic machine are 

inessential in this context. For instance, the equivalence proof we sketched above 

demonstrates that even if we think o f a nondeterministic machine as guessing during its 

computation, we can eliminate those guesses in favor of an exhaustive search. We can 

see immediately that such a search can be conducted deterministically, and hence we can 

maintain our intuitions o f what it is to be an algorithm even though the notion o f a 

"guessing" algorithm seems to have no place in the discussion of what can be 

accomplished by machines.

But strange things happen when we introduce resource bounds and thereby shift 

our attention from nondeterminism as a vindication o f the Church Turing thesis to 

nondeterminism as a useful device in the theory o f computational complexity. The idea is 

to keep track o f how much time (or space) it takes to compute. For instance, using the 

Turing machine as our model o f computation, we can count the number o f  steps (or tape
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cells) it takes to compute a given function. We are especially interested in those 

characteristic functions that can be computed in a polynomial amount o f time where the 

polynomial is a function of the length of the input string whose membership in a 

language is being decided. When a characteristic function can be computed by a Turing 

machine within a polynomial time bound, we say that the corresponding language can be 

decided by a polynomial-time Turing machine.

As we indicated in Chapter I, the P versus NP problem asks whether the P, the 

class of languages that can be decided by a deterministic polynomial-time Turing 

machine is the same as the NP, the class o f languages that can be decided by a 

polynomial-time nondeterministic Turing machine. Since we have already established the 

equivalence between deterministic and nondeterministic Turing machines, it might seem 

that we could use the same simulation technique to prove that P=NP. But we cannot.

To see why we cannot we note that although the simulation demonstrates how all 

the branches in a nondeterministic computation tree can be surveyed systematically, there 

will be, in general, exponentially many branches to survey. Even if each individual 

branch can be surveyed in a polynomial amount o f time, it will take an exponential 

amount o f time to survey every branch in the nondeterministic computation tree. 

Although we can always use a deterministic machine to simulate nondeterministic 

computation we do so with an exponential loss of efficiency with respect to the time it 

takes to perform the computation.

Papadimitriou claims that the P versus NP problem is a matter o f understanding 

"[wjhether this exponential loss is inherent or an artifact o f our limited understanding o f
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nondeterminism" (1994, p. 45). At this point, however, there is nothing very mysterious 

about nondeterminism; we define nondeterministic machines in terms o f transition 

relations rather than transition functions, we point to a well-known simulation technique 

and then find an exponential explosion in the time it takes to survey all the choices a 

nondeterministic machine can make. If we look at nondeterminism in this light, it is not 

surprising that the P versus NP problem would be described informally on the Claymath 

web-page as the question whether there exists a certain kind o f problem that "really does 

require a long time to solve" or whether "we simply have not discovered how to solve 

them quickly." The intuitions about guessing, parallelism and bushy computation tress 

are all colorful ways of describing the fact that some problems seem to engender an 

exponential search-space. The heuristics we use to understand nondeterministic behavior 

are inessential in this context. In fact, NP might as well stand for nonpolynomial rather 

than nondeterministic. We say this even though Smith makes clear that, "’NP’ stands for 

nondeterministic polynomial" not "nonpolynomial"(1989, p. 318). Presumably, Smith is 

making sure his readers understand what the abbreviations stand for in a theoretical 

context. But in a philosophical context, we might as well assume that "NP" abbreviates 

nonpolynomial since it is clear how we can transform a  nondeterministic algorithm into a 

deterministic algorithm with an exponential loss o f efficiency. Nothing about such a 

transformation challenges our intuitions about what it is to be algorithmic; it merely 

suggests that the algorithms for some problems might take a long time to execute.

Still, our glib reinterpretation o f  "NP" is reasonable only if  we think that there is 

nothing about nondetermimsm that needs to be understood apart from our usual intuitions
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about algorithms. Such a view is implicitly supported when the equivalence between 

(unbounded) deterministic and nondeterministic Turing machines is presented as 

evidence for the Church Turing thesis. But suppose we take Smith to be reminding us of 

something more fundamental than just the proper use o f abbreviations. Likewise, suppose 

it is possible that our understanding of nondeterminism really is limited as Papadimitriou 

suggests. The question then becomes one of making sense o f nondeterminism perse  and 

it is in this context that we find conflicting intuitions beginning to emerge.

Let us consider another open problem in complexity theory. We define the class 

coNP as the class o f languages whose complement' can be decided by a nondeterministic 

Turing machine in polynomial time. Now when we ask whether NP=coNP we run into a 

problem. In the case o f deterministic machines the analogous question (P=coP?) is 

trivially settled by observing that a Turing machine which decides a language in 

polynomial time can be modified to decide the complement language in polynomial time 

simply by interchanging the "accept" and "reject" states. It is tempting to make the same 

argument in the case o f nondeterministic machines, but we cannot.

To understand why we cannot, let us again consider the language SATISFIABLE. 

As we observed above, SATISFIABLE can be decided by a nondeterministic algorithm 

and, moreover, it can be decided in polynomial time.2 Hence, SATISFIABLE is in NP

1 Given a finite alphabet, 2, the complement here is taken with respect to a decidable 
set o f strings, S c: 2* so that given a language, L c S ,  the complement Lc = S - L (and 
not 2* -L).

2 How? Recall that the nondeterministic machine does not survey all o f  the 
exponentially many assignments. Rather, it guesses an assignment if  such an assignment 
exists (in a single step) and then verifies that the assignment does indeed satisfy the
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and its complement language of all Boolean formulae that are not satisfiable is in coNP. 

If  we take the nondeterministic machine that decides SATISFIABLE and simply switch 

its "accept" and "reject" states (as we do to show that P=coP) the new machine will not 

decide the complement language of Boolean contradictions but rather the language 

consisting o f all those Boolean formulae which have at least one falsifying assignment 

(cf. Bovet and Crescenzi 1994, p. 134). Had our naive solution worked, we would have 

demonstrated that NP=coNP.3 Obviously, we cannot infer that NP^coNP from the failure 

o f our single attempt, but we can look at our failure as a concrete example where the 

nondeterministic polynomial-time algorithm we use to decide one language cannot be 

transformed into another nondeterministic polynomial-time algorithm to decide the 

complement language.

There is something peculiar about the explanation we just gave but once again we 

find ourselves in a position where it seems that if  we have to ask, we must not understand 

the question. Even though the our explanation is drawn from a canonical example, text 

books devote hardly a sentence or two to its explanation. For example, Bovet and 

Crescenzi point out that it is "immediately" clear that the naive attempt to interchange 

"accept" and "reject" states fails, but then they observe without further explanation that,

formula in question. The verification can be performed in polynomial time. In fact, if the 
formula is presented in conjunctive normal form, the machine need only scan the input 
once to see if the assignment makes a single literal true in each conjunct.

3 For suppose we have a NP-complete language, L (nb.,SATISFIABILITY is NP- 
complete), such that LceNP. Let L 'eNP. Since L is NP-complete, L' < L, and moreover, 
L'c < Lc. But LceNP, so L'ceN P and L'ecoNP. Hence, NP c= coNP. Conversely, suppose 
L'ecoNP. Since L is NP-complete, Le is coNP-complete (since for any L"ecoNP, we 
have L"ceNP, and so L"c < L, hence L" < L0), so L' < Lc. But since LceNP, Lc < L. Hence,
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"All attempts to design a nondeterministic polynomial-time Turing machine deciding 

SATISFIABILITY1-' [i.e., the complement o f SATISFIABILITY] have failed up to now" 

(Bovet and Crescenzi 1994, p. 134). Obviously, there is more to understanding why the 

naive solution fails than simply observing that it does fail, as Bovet and Crescenzi do; for 

if  it were a trivial matter to understand why various attempts to solve to the NP~coNP 

problem fail we wouldn't be here discussing an open problem. In fact, when we try to 

understand what exactly has gone wrong with our naive solution to the NP=coNP 

problem, we uncover a tension between our intuitions about algorithms and our intuitions 

about nondeterminism as a useful mathematical device.

For instance, there is a very strong pre-theoretic intuition that algorithms compose 

(think o f function calls and subroutines here). Let us recast our original impulse to 

interchange "accept" and "reject" states more precisely in this light: Let us take theory on 

its face and assume that we have a nondeterministic polynomial time algorithm that 

decides SATISFIABILITY; that is, we have an nondeterministic algorithm that takes a 

Boolean formula as input and outputs either "yes, satisfiable" or "no, not satisfiable" 

according to whether the formula is in fact satisfiable. O f course, we also have a 

deterministic constant time algorithm that takes either "yes, satisfiable" or "no, not 

satisfiable" as input and outputs accordingly either "no, not contradictory" or "yes, 

contradiction." Put these two algorithms together and it would seem we have a 

nondeterministic polynomial time algorithm to decide the set o f Boolean contradictions.

Have we just shown that NP=coNP? The answer is an emphatic "no," but let us be

L' < L, and L 'eNP. So, coNP q NP. (See also Bovet and Crescenzi 1994, pp. 134-140).
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clear about the reason. The text book explanation does not attribute our nonsolution to a 

peculiar constraint on o f the output o f the nondeterministic machine or, for that matter, 

how the output should be understood. Indeed, such discussions about the nature of 

symbol and interpretation are never even addressed. Rather, on the received view, our 

composite algorithm fails because o f a fundamental asymmetry between yes and no 

outputs from nondeterministic algorithms (cf. Bovet and Crescenzi 1994, p. 134; 

Papadimitriou 1994, pp. 45-46).

Again, it is helpful to think about our non-solution in terms of the computation 

trees we associate with nondeterministic Turing machines. The composite algorithm we 

propose yields a "yes, contradictory" answer even if  there is only a single rejecting 

branch in the computation tree o f the constituent algorithm for SATISFIABILITY. What 

we need is a composite algorithm to say "yes, contradictory" only if eve>y branch in the 

computation tree o f the constituent algorithm for SATISFIABILITY rejects, but we do 

not get that algorithm by composition.

Speaking more generally, we might say that nondeterministic Turing machines 

have a very weak input-output relation, or even that the sense o f decide associated with 

nondeterminism is very liberal (Papadimitriou 1994, p. 44). In fact, the relation is so 

weak and the sense o f decides is so liberal that the output o f a nondeterministic machine 

cannot be used as input to a deterministic machine. It does not follow, however, that we 

can never compose deterministic and nondeterministic algorithms, for we talk about 

nondeterministic algorithms with deterministic components all the time (e.g., every time 

we display an NP-complete problem). The problem is that deterministic and
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nondeterministic algorithms have different "implementations," so to speak, and we must 

take care that composite algorithms produce their answers in the right way. In this case, it 

turns out that our composite algorithm does not accept in the right manner and it ends up 

saying "yes" too often.

So, do we abandon our pre-theoretic intuitions about composition? I do not think 

so, for up till now we have seen that the heuristics we associate with nondeterminism are 

inessential, but when we understand why our composite algorithm fails, we finally see an 

instance where it makes a difference how we think about nondeterminism. In particular, 

we see that our composite algorithm fails because it is so easy for a nondeterministic 

Turing machine to output "yes" and so hard to output "no." The fact that nondeterministic 

machines can guess correctly is essential here and it manifests itself in the asymmetry 

between "yes" and "no" answers; a nondeterministic machine can always make a correct 

"yes" guess (if one exists), but it cannot make all the necessary "no" guesses. If we do not 

think about nondeterministic machines as always guessing correctly, we do not have the 

asymmetry, and moreover, we do not have the putative separation between NP and coNP. 

Note that the guessing here is not random, nor is it a reflection o f  an irreversible process. 

Rather, we are committed to a view in which the nondeterministic machine is somehow 

inspired (either to make the correct guess all the time or to manifests the correct behavior 

among all implicitly parallel behaviors). If a nondeterministic machine were to guess 

randomly, then the very process that might lead it to discover an accepting branch would 

also ultimately lead it to a survey o f all the rejecting branches, and again, we wouldn't 

have the asymmetry on which the putative separation between NP and coNP rests. Thus,
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it is theoretically important that we understand nondeterminism in terms of a very 

peculiar sense o f guessing. More to the point, there is nothing about an inspired guess 

that can be reconciled with our intuitions about what it is to be an algorithm, what it is for 

a process to be physically nondeterministic or even what it is that the unlucky 

mathematician does.

No doubt some will see foregoing arguments as too literally-minded. Perhaps they 

will view words like algorithm, output and decides more metaphorically and will instead 

point to another more abstract characterization o f the NP=coNP question. For them, the 

suggestion that NP^coNP amounts to a claim that there is something fundamentally 

different about deciding SATISFIABILITY and deciding the set o f Boolean 

contradictions. They will readily agree that there is nothing realistic about the inspired 

guessing of a nondeterministic algorithm, but that such intuitions underwrite an 

interesting mathematical characterization of a class of problems.

To make good on such a claim we need a characterization o f the NP=coNP 

problem that allows us to focus our attention on intrinsic features o f  the decision 

problems at hand rather than our intuitions about machines. So let us forget about Turing 

machines and algorithms and instead consider how we decide SATISFIABILITY and the 

set o f Boolean contradictions using something like a truth table. The first thing to notice 

is that we can certify that a Boolean formula is satisfiable by looking at a (well-chosen) 

single row o f a truth table where, by contrast, a single row in a truth table can tell us only 

that a Boolean formula is not a contradiction. We might say that problems in NP have 

succinct certificates while problems in coNP have succinct disqualifications. That is, it is
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easy to certify that a formula is satisfiable and it is likewise easy to certify that a formula 

is not a contradiction, but it is hard to certify that a formula is not satisfiable or that is it a 

contradiction. Once again, we see an asymmetry between certifying a Boolean formula as 

satisfiable and verifying a formula as a contradiction, only this time the difference is 

evident in the relationship between negated quantifiers rather than in our definition of 

acceptance by a nondeterministic Turing machine. Moreover, given this more general 

logical characterization, it really does seem that we have hit upon an intrinsic feature of 

the NP=coNP problem as opposed to some artifact o f a peculiar machine definition.

But recall that a decision procedure is given by describing algorithms for both 

positive and negative tests, and the negative test for SATISFIABILITY involves 

inspecting every row o f a truth table, which is exactly what we must do to verify a 

formula as a contradiction. As the name o f the NP=coNP question suggests, the problem 

of deciding SATISFIABILITY and the problem of deciding the set o f Boolean 

contradictions are completely complementary problems. Indeed, when we consider both 

positive and negative tests, the only asymmetry between the two decision procedures is 

that wherever the one says "yes" the other says "no" and conversely; a complete 

specification o f one algorithm together with a trivial transposition of answers gives, ipso 

facto , a complete specification for the other algorithm.

Moreover, the observation that we need only inspect a single row in a truth table 

to certify that a formula is satisfiable, but that we need to survey every row to certify that 

a formula is contradictory, is not quite the difference in kind that we might expect.

Indeed, such an observation is cold comfort to the beginning logic student who knows
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full well how to use a truth table to decide satisfiability, but must take an exam where all 

the Boolean formulae have been deliberately constructed so that a single satisfying 

assignment appears in the last row in the canonical enumeration of truth-assignments. 

The point here is not how to make freshmen logic students unhappy (although that point 

is certainly worth noting), but rather, that it is hard to appreciate two algorithms as 

fundamentally different just because one might terminate before the other.

The trick is to make these points without seeming ignorant or stubborn. We do 

not mean to suggest that complexity theorists have overlooked a trivial nondeterministic 

polynomial-time algorithm to decide all Boolean contradictions and we should take 

seriously the putative separation between NP and coNP suggested by the failure so far to 

find an NP-complete language whose complement is also in NP. We should also 

recognize the fact that the putative separation between NP and coNP allows a finer 

grained classification for some problems.4 Rather, our point is that understanding simple 

ziortsolutions to the NP=coNP either entails a view of Turing machines that weighs 

against some very natural intuitions about algorithms or shows that we must embrace a 

more general logical distinction between algorithms that seems to mark no substantive 

difference outside o f  a purely theoretical context.

4 As Papadimitriou explains, we can use NP and coNP to classify problems that 
require exact solution (1994, p. 412). For example, consider the exact traveling salesman 
problem where we are given a list o f cities, a distance matrix and an integer k. The 
problem is to decide whether there is tour of all the cities where the total distance 
traveled is exactly k . There is no obvious nondeterministic algorithm to decide the 
problem directly, but we can classify it as the intersection between an NP problem and an 
coNP problem: namely, is there a tour that covers a distance no greater than k, and is 
there a tour that covers a distance o f at least k.
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The NP=coNP problem represents a crossroads o f sorts. It marks a point at which

we turn away from a discussion where intuitions about nondeterminism resonate

naturally with our intuitions about machines and what it is to be algorithmic, to a

discussion of nondeterminism per se in which we seem to abandon our intuitions about

algorithms. Consider how Papadimitriou describes the situation,

The nondeterministic Turing machine is not a true model o f  computation. Unlike 
the Turing machine [i.e., the deterministic Turing machine] and the random 
access machine, it was not the result o f an urge to define a rigorous mathematical 
model for the formidable phenomenon o f computation that was being either 
envisioned or practiced. Nondeterminism is a central concept in complexity 
theory because of its affinity not so much with computation itself, but with the 
applications o f  computation, most notably logic, combinatorial optimization and 
artificial intelligence (1994, p. 49, emphasis in the original).

We see now the extent to which our intuitions about nondeterminism and computation

have given way to intuitions about nondeterminism as a useful mathematical device.

There is, o f course, a presumption that these intuitions are reconcilable— that we are

standing not so much at a crossroads o f two divergent paths but rather at a point o f

contact between two approaches to the same theory. But we have good reason to doubt

such a presumption. For starters, when we reflect on the original motivation for a theory

of complexity we find that researchers felt it was time to "deal realistically with the

quantitative aspects o f  computing" (Hartmanis and Hopcroft 1971, p. 444).s At the very

least, recognizing the original motivation for a theory o f computational complexity

suggests that there will be a non-trivial story to tell about how we got from a theory

5 We'll also see below that even automata theory, the more general theory o f "abstract" 
machines, was often motivated with an appeal to the better understanding of real, 
concrete computers.
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ostensibly concerned with concrete machines and real algorithms to one where the focus 

has shifted to, among other things, the finite model theory o f second order logic. (We 

will try to tell that story below and in more detail in Chapter 4.) Our immediate concern, 

however, is how to make sense o f the seemingly contradictory intuitions about 

nondeterminism.

Let us summarize the conceptual development. Understanding the received 

theoretical view often begins with a demonstration o f the equivalence between 

deterministic and nondeterministic Turing machines. The proof is presented as further 

evidence for the Church Turing thesis. When we impose a polynomial-time bound that 

equivalence comes into doubt, but our intuitions about nondeterminism remain anchored 

to thoughts about algorithms and machines insofar as we understand nondeterministic 

algorithms as colorful descriptions o f exponential search spaces. But as we delve more 

deeply into the theory, and as we begin to think about nondeterminism perse, we find an 

example where it is hard to understand the problem without giving up our intuitions 

about algorithms. Indeed, the anchor to our intuitions about algorithms is lost when we 

must think about nondeterminism in terms of inspired guessing. The justification for such 

a view of nondeterminism is that it underwrites a (peculiar) distinction, and hence, yields 

an interesting mathematical characterization of a class problems. All the while, we talk 

about the nondeterministic Turing machine, as if  the intuitions surrounding it were a 

clear and consistent. But when we look closely we find a tangle o f intuitions.

In their classic text, Hopcroft and Ullman suggest that we might avoid all this 

confusion "As long as our intuitive notion o f ‘computable’ places no bound on the
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number o f steps or the amount of storage..." (Hopcroft and Ullman 1979, p .166). In other 

words, we might still identify the Turing computable functions with the intuitively 

computable functions, think about nondeterminism as further vindication for such a 

position and simply ignore complexity theory.

Or perhaps we should ignore the Turing machine instead. This is exactly what 

Stewart suggests when he announces "The Demise o f the Turing Machine in Complexity 

Theory"(l996). At first blush, it is hard to imagine how we could even hope to develop a 

theory of complexity without some robust, undergirding notion o f algorithm (either 

Turing's or one o f the equivalent notions). It turns out that Stewart's motivations are more 

pragmatic than his sensational title suggests: he wants to strip away the cumbersome 

detail o f Turing machine "code" from the theory and hopes that the vast resources of 

formal logic might help crack some of the seemingly intractable problems in complexity 

theory. But on a deeper level Stewart's motivations reveal exactly what is entailed in the 

shift from a more intuitive theory o f complexity to the theory about the applications of 

computing: without the Turing machine and the concomitant intuitions about algorithms, 

assumptions about nondeterminism are justified by their theoretical fecundity rather than 

their intuitive cogency. As we observed above, "NP" becomes just a label for some class 

o f problems. All that matters on this view is that we have some way o f characterizing 

classes o f problems and that characterization can be logical and abstract or premised on 

an "unrealistic model o f  computation" (Papadimitriou 1994, p. 45, emphasis in the 

original).

Theory will often have a life o f its own quite apart from practice. Even if the idea

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

o f a guessing computer is anathema to today's digital engineer,6 the idea o f a 

nondeterministic algorithm clearly plays a central role in today's complexity theory. Still, 

we confront a philosophical dilemma when we take the theory at face value: we have just 

seen that there is tension among our intuitions about algorithms, determinism and 

resource bounds; either we ignore resource bounds (and 35 years o f theoretical work) 

when we formalize our notion o f algorithm or we embrace a theory that has seemingly 

divorced itself from our natural intuitions about algorithms. It is possible that the theory 

itself might someday reconcile these positions, but given the extant work on relativized 

computation and the more recent attempts at independence proofs for the P=NP question, 

we must remain circumspect about the theoretical ends justifying the means.7 In the 

meantime, it will be hard to tell whether continued work reflects the articulation of a 

detailed theory of complexity or the first symptoms of a degenerating research program 

pursued "purely for aesthetic reasons" (Stewart 1996, p. 222). A wait-and-see attitude 

will not help us here. Pace Hopcroft and Ullman, we can neither ignore complexity 

theory nor wait for results that might someday reconcile our intuitions about

6 And it really is. Speculation about future technology notwithstanding, as we 
indicated above, one of the central motivations for today's synchronous design paradigm 
is the predictable evolution from state to state in the control o f a computer. The idea that 
the next state might not be completely determined by the present state and input is more 
likely to come up in discussions o f  transition or output races and it is hardly a welcome 
thought. See, e.g., (Prosser and Winkel 1996, pp. 170-175, 191-194).

7 We also do well to remember some o f the unexpected results about space complexity 
here. For example, reflecting on (Savitch 1969), Hartmanis recalls that he "never 
suspected" a sub-exponential deterministic simulation of tape-bounded nondeterministic 
computations (Hartmanis 1981). And more recently, Immerman's 3-page (1988) result 
settled a longstanding problem proving that nondeterministic space is closed under 
complementation—a notoriously difficult problem that was at one time conjectured to
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nondeterminism.

3. One Idea from Three Traditions

Given that it is so hard to see where the theory o f computational complexity is 

going, it might make more sense to see where it has been. Indeed, if we could place the 

idea o f a nondeterministic Turing machine in a robust historical context, we might be 

able to make more sense of the philosophical dilemma described above. But making 

historical sense o f nondeterminism turns out to be a doubly hard task; not only has the 

historical work on theoretical computer science just begun, historiographic tensions have 

already become evident. Insofar as there is a received history o f nondeterminism, it is 

characterized somewhat oddly both as a continuous and seamless development of ideas 

and as a locus for the unexpected convergence o f seemingly orthogonal interests. For 

example, in their seminal paper, Hartmanis and Steams (1965) cite Davis (1958) who, in 

turn, refers the reader to a long list o f references to Kleene and Post. And, of course, 

everyone mentions Turing's 1936 paper. Thus there appears to be a natural progression of 

work starting with Turing and culminating in the theory o f computational complexity. At 

the same time, however, theoretical computer science (broadly speaking) is widely 

recognized to be the product o f three different disciplines. This convergence occurred in 

the late fifties and early sixties as ideas from recursion theory, formal language theory 

and complexity theory came together as the central threads in theoretical computer 

science. These conflicting historical emphases make it all the harder to uncover the origin 

o f  the nondeterministic Turing machine. Nevertheless, let us do our best and proceed by

have a negative solution.
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reconstructing the received history around the framework given by Greibach (1981).

We begin by noting that although Turing mentions "choice machines" in his 1936 paper, 

they are seemingly excluded from the formal development of Turing's Turing machines.8 

As Hodges (1983) points out, whatever Turing thought about nondeterminism is probably 

better understood in either a much wider philosophical context o f free will versus 

determinism or, perhaps owing to his experiences with cryptography during the Second 

World War, how machines might be constructed "whose behavior appears quite random 

to anyone who does not know the details of their construction" (Hodges 1983, pp. 

441-442). Moreover, those who carried on Turing's tradition by developing a rich theory 

of computation focused exclusively on deterministic machines. In his 1957 address on 

"The Present Theory o f Turing Machine Computability," Rogers describes the theory as 

an investigation of what can be done on a digital computer with "explicit deterministic 

programs of instruction" (Rogers 1969, p .130). Likewise, except for a footnote excluding 

machines with "random" elements from the discussion, there is simply no mention of 

nondeterministic machines in Davis' influential 1958 text on computability theory. 

Finally, Minsky (1967, p. 314) comes closest to discussing the what we would call 

nondeterminism when he describes (in the index) a "non-determinate" machine "whose 

behavior is not entirely specified in the given description." He goes on to note, however, 

that such machines are not discussed in his text. Thus we see that idea o f a 

nondeterministic machine, though recognized at some level, was not considered germane

8 Actually, there is much more to say here, but we will postpone that discussion until 
Chapter 4. We give a hint o f  the discussion in note 11 below.
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to the study o f algorithms.

By 1957, the theory o f effective computability was well developed mathematically with 

applications ranging from the study of logic and mathematical foundations to recursive 

analysis. But it was no longer a theory which that with practical questions about real 

computers (see, e.g., Rabin and Scott 1959; Rogers 1969). The Turing machine was so 

powerful a model o f computation as to be uninteresting in many applications (see, e.g., 

Chomsky 1959, p .138). Then in 1959 Rabin and Scott published their "Finite automata 

and their decision problems," pointing to the finite automata as a "better approximation 

to the idea o f a physical machine" ( p. 2). More important, that paper contained what is 

widely believed to be the first explicit, formal discussion of a nondeterministic machine 

along with a proof o f the equivalence between deterministic and nondeterministic 

automata.9

At roughly the same time, the Chomsky hierarchy was introduced in (Chomsky 

1959). The hierarchy consists o f four types o f grammar (corresponding to four kinds o f 

formal languages) each of which is characterized in terms of the restrictions it places on 

the rules o f that grammar. Proper containment among the four corresponding languages

9 Once again, the proof introduces an exponential explosion, only this time the jump 
comes in the number o f  states and not the amount of time required to perform the 
simulation. Unfortunately, the simulation o f nondeterministic automata does not 
generalize to Turing machines and so the Rabin and Scott paper, as famous as it is, brings 
us no closer to understanding when the equivalence between unbounded deterministic 
and nondeterministic Turing machines was established. The best 1 can do is to point to 
three sentences in a footnote in Turing's original paper where he describes how to start 
with a choice machine to construct an "automatic" (i.e., deterministic) Turing machine. 
But there is a long story to tell about that note concerning the perceived naturalness of 
Turing's account and perhaps ultimately the widespread acceptance o f his model over

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

was demonstrated along with some interesting affinities to recursion theory (e.g., type-0 

languages = r.e. sets, type-1 languages = recursive sets). More significant, connections 

between grammars and machines were developed. Greibach points out that by 1958 

Chomsky and Miller had essentially defined the type-3 grammars in terms of finite 

automata and that subsequent work on the finite-state languages most often pointed to the 

1959 paper by Rabin and Scott (Greibach 1981, p. 18). Here we see an unexpected 

convergence: the connections between the theory of abstract machines and formal 

grammars is one of the first overtures between two otherwise disparate research 

programs.

On the received view it is easy to see how this connection grew stronger with the 

development o f type-2 grammars and their relation to push-down automata. The idea of a 

last-in-first-out storage had applications to the syntactic analysis o f  both natural and 

artificial languages; in particular, it was suggested in 1960 that the push-down store 

might be useful in the compilation of ALGOL while at the same time it was being used in 

the mechanical translation o f Russian into English (Greibach 1981, pp. 19-22). In 1962 

Chomsky proved the equivalence between the context-free languages and those accepted 

by nondeterministic push-down automata, and by 1964 it was clear that the deterministic 

context-free languages were properly contained within the nondeterministic context-free 

languages (Greibach 1981, p. 22 & p. 25).

The last machine-grammar connection to be made in the Chomsky hierarchy was 

between the type-1, or context-sensitive grammars, and the linear-bounded automata.

others models o f computation.
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Unlike the finite state machine or the push-down automaton, the linear-bounded 

automaton was not a new kind of machine but simply a Turing machine (originally 

deterministic) limited by the input length in the amount o f tape it could use (Greibach 

1981, p. 23). But if the model seemed familiar, the questions it raised were not. Greibach 

recalls that despite the other well known equivalences between deterministic and 

nondeterministic machines, proofs with respect to the context-sensitive languages 

seemed difficult because no one was really accustomed to thinking nondeterministically 

(Greibach 1981, p. 24). So it seems that thinking about linear-bounded automata must 

have made thinking about nondeterminism more familiar. It also seems that the focus on 

the linear-bounded automaton would have made for a very natural dovetailing between 

automata and formal language theory on the one hand and complexity theory on the 

other. For by 1964 not only had Kuroda completed the Chomsky hierarchy by relating 

the type-1 grammars to nondeterministic linear-bounded automata, but Hartmanis and 

Steams had introduced a robust theory o f  computational complexity. The study of linear- 

bounded automata finally presents us with a candidate problem around which different 

ideas about machines, determinism and resource bounds might have crystallized.

Unfortunately, the history we have just presented raises more questions than it 

answers. For instance, Hartmanis recalls that it was an unnatural hitch in Rabin and 

Scott's (unpublished) definition of two-way automata which led Myhill to define the 

linear-bounded automaton in 1960. Hartmanis goes on to remark how such "an innocuous 

and unnatural model can trigger a fruitful investigation" (Hartmanis 1981, pp. 48-49). 

True enough, but on a view like that we are forced to ask how it happened after 1965 that
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nondeterminism, by then an assumption that could no longer be regarded as innocuous, 

was reconciled with a complexity theory where the time-bounded deterministic Turing 

machine was chosen as a model for its obvious resemblance to the "operation o f a present 

day computer" (Hartmanis and Steams 1965, p. 287). It is likewise remarkable that the 

first serious questions about nondeterminism were raised with respect to the linear 

bounded automaton, which itself was considered to be a "more natural model for 

computers" (Hartmanis 1981, p. 48). Part of the answer comes from Greibach who recalls 

that attention had centered on the context-sensitive languages because the connections at 

the top o f the hierarchy (type-0 = r.e. languages) had already been worked out by 

Chomsky and because the equivalence between unbounded deterministic and 

nondeterministic machines had been proposed in a 1963 dissertation by Evey (Greibach 

1981, p. 24). Greibach's claim is surprising, for the 1959 proof by Rabin and Scott of the 

equivalence between deterministic and nondeterministic finite state machines is 

consistently cited, while the Evey dissertation, when it is cited, only appears in the 

context o f push-down automata (see e.g., Hopcroft and Ullman 1969, pp. 45 & 79). It 

seems odd that an equivalence proof that is so ubiquitous in text books and so 

troublesome in complexity theory could hang on such a recondite source.

Thus it seems that while the other nondeterministic machines were explicitly 

introduced as they related to the Chomsky hierarchy, the idea o f a nondeterministic 

Turing machine crept into theoretical computer science rather quietly. In the case of 

finite automata, nondeterminism was presented as a conservative assumption. The 

assumption proved to be more interesting with respect to push-down automata when
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separation between the deterministic and nondeterministic machines was established. 

Even in the case of tape-bounded automata, where answers have often been a long time 

coming, it must have been reassuring when Savitch (1969) demonstrated that a 

nondeterministic machine working in polynomial space could still be simulated 

deterministically in polynomial space. But while nondeterminism was proving to be 

rather well-behaved with respect to space, there was no such comfort to be found with 

respect to time. Cook (1971) introduced the idea of an NP-complete problem (i.e., a 

problem which characterizes the difficulty of all the problems solvable by a 

nondeterministic machine working in polynomial time) and by 1972, Karp had presented 

a veritable laundry list of NP-complete problems and demonstrated that either all the 

problems are solvable in deterministic polynomial time or none of them are. Thus began 

a long and philosophically strange journey into complexity theory.10

4. Where do we go from here?

Although there are unsettling gaps in the received history, there are also hints o f a 

grand continuity. For instance, like Hilbert long before him, Cook was preoccupied by 

questions about mechanical theorem-proving and hoped that his work would "bring out 

fundamental limitations and suggest new goals to pursue" and ultimately "stimulate 

progress toward finding better complexity measures for theorem provers" (Cook 1971, 

p. 157). Once again we see affinities between logic and complexity theory, only this time 

the emphasis is historical and it suggests a new way of understanding how the theorist is

10 Moreover, the bibliographic trail from Karp through Cook points back to familiar 
sources, (Hopcroft and Ullman 1969) in particular, and again fails to reveal a reference to
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(and has been) able to countenance an otherwise counter-intuitive notion o f a 

nondeterministic Turing machine. The story goes something like this: The longstanding 

historical connections between logic and complexity theory are not accidental; ideas and 

techniques from one discipline have inevitably made their way into the other. The 

nondeterministic Turing machine is a case in point: rather than try to understand 

nondeterminism directly, we should instead think of how we go about proving theorems 

in an axiomatic system. The first thing we notice is that although the rules o f proof are 

strictly specified in an axiomatic system, the system itself does not determine which rule 

is applied at any point in a derivation. In exactly the same way, while a nondeterministic 

Turing machine has only finitely many different configurations it might realize on the 

next step, there is no telling which configuration it will realize. The nondeterministic 

Turing machine is thus seen by many in a natural context, both historically and 

conceptually, as a useful way of characterizing derivations in formal systems.

There is something comforting about this story, but ultimately it does not explain 

the gaps in the received history, it only conceals them. When we look carefully at the 

original theoretical justifications for nondeterminism we find a wide variety of 

motivations, some of which are logical while others are not. Ultimately, the study of 

these disparate motivations brings us no closer to resolving the philosophical dilemma 

we described above.

Having failed to find any historical solace, we can only hope that our worries will 

someday be resolved theoretically. There are three avenues o f research in the current

the explicit introduction o f the nondeterministic Turing machine.
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state of the art. In one direction the theory becomes even more abstract; in the other we 

see the signs o f  a theoretical regress; and in the third direction we see the potential for the 

theory o f  computational complexity to be rendered moot.

4.1 Looking at alternation to understand nondeterminism

Chandra and Stoclemeyer (1976) introduced the idea o f alternation as a 

generalization of nondeterminism. As we indicated in Chapter 1, the idea is to consider 

the computation tree we associate with a nondeterministic machine, and imagine that at 

some nodes in the tree the machine must survey all the branches below that node, while 

at other nodes the machine need only survey a single branch. In this sense, the machine 

alternates between what we might call existential and universal behaviors. Alternating 

machines generalize nondeterministic machines in the sense that nondeterministic 

machines exhibit only the existential behavior (i.e., nondeterministic machines choose a 

single path through the computation tree). Chandra and Stockmeyer established some 

interesting relations between time and space complexities and subsequent work (e.g. 

Kannan 1981; Paul et al. 1983) has shown separation between deterministic and 

nondeterministic time under particular constraints. Many, however, see results like these 

as symptomatic o f trend toward scholasticism in complexity theory. Moreover, results 

like these focus on the applications o f computation and, as we have already suggested, 

the philosopher's computational interests are more likely to resonate with issues o f 

mechanism rather than logic. While the persistent use o f the word "machine" suggests 

continuity, it is not clear that intuitions about algorithms find any natural place in the 

discussion of a machine-free complexity theory. This is not to say that such an
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explanation cannot be given, but rather that it has not yet been given. Without a more 

robust philosophical account relating notions o f effectiveness and formal logic (i.e., an 

account that does not presuppose that the connection has already been forged by the work 

in theoretical computer science), focus on alternating Turing machines will do little to 

resolve our conflicting intuitions about nondeterminism.

4.2 Redefining nondeterminism

A second direction is followed by Spaan, Torenvliet, and van Emde Boas (1989) 

who modify the definition o f acceptance by a nondeterministic machine in such a way 

that the recursion theoretic distinction between the recursive and recursively enumerable 

sets (a distinction that never had anything to do with nondeterminism) can be viewed in 

analogy with the putative distinction between P and NP (a distinction which has 

everything to do with nondeterminism). Their idea is to impose a fairness condition such 

that a nondeterministic machine, when given a choice between transitions to two 

different configurations, is guaranteed to explore both transitions after some finite 

number o f steps. In other words, a fa ir  nondeterministic machine will eventually explore 

all its choices, whereas an unfair nondeterministic machine is guaranteed to survey only 

those choices that lead to acceptance, provided such a sequence exists. There is no 

guarantee that an unfair machine will explore all the choices available to it.

The motivation to introduce the notion o f a fair nondeterministic machine follows
from

the self evident observation that in the world o f  unbounded computation 
nondeterministic devices are more powerful than deterministic ones as 
exemplified by the inequality REQtRE... the nondeterministic devices could 
guess and verify the halting computations which a deterministic device cannot
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produce (Spaan, Torenvliet, and van Emde Boas 1989, p. 187).

In particular, we can imagine a fair nondeterministic Turing machine deciding the 

Halting problem11 as follows. Let M be  a fair nondeterministic machine M  such that M  

can simulate any other deterministic machine M' on any input. During its computation, M  

chooses nondeterministically either to simulate M 'o vM  simply prints a "0" and halts. If 

M' halts on its input, it does so after a finite number o f  steps, at which point M  halts and 

prints a "1." If, however, M' does not accept its input, it will never halt and the simulation 

of M ' could diverge (i.e., continue indefinitely). But since M  is fair, it must after some 

finite number of steps must choose not to simulate M ' and instead will print a "0" and 

halt. After some finite number of steps, M  will either print a " 1" if M ' halts on its input, or 

M  will print a "0" if M' does not halt on its input. Hence we have a fair, unbounded 

nondeterministic machine that solves the Halting problem— something no deterministic 

machine can do, and thus we have a separation between deterministic and 

nondeterministic devices in the unbounded case that parallels the suspected separation 

between such devices in the time-bounded case (Spaan, Torenvliet, and van Emde Boas 

1989, pp.188-190).

Although the notion o f fairness has well-established roots in the theory of 

concurrent processes, the argument Spaan, Torenvliet, and van Emde Boas give might 

seem a bit slippery.12 Indeed, because it contradicts the well-know unbounded

11 See (Rogers 1967, pp. 24-26) for a description o f  the Halting problem.
12 In fact, the presentation o f the proof given in (Spaan, Torenvliet, and van Emde 

Boas 1989, pp. 189-190) is a bit hard to follow. At one point they state that a bound is 
specified in advance indicating how many steps M must simulate M ' and if M ' "accepts
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equivalence between deterministic and nondeterministic Turing machines, we might see

the proof here as a reduclio to establish that the notion o f  a fa ir  nondeterministic machine

has no place in the traditional theory o f recursive functions. But even if we worry about

the cogency o f  the proof, we should still take note of what has motivated Spaan et al to

challenge the tradition. In particular, they report that,

All o f  this work was inspired by the frustration originating from the difficulty o f 
the fundamental problem in computational complexity which has become known 
as the P=NP? problem (Spaan, Torenvliet, and van Emde Boas 1989, p .187).

They continue,

Given the difficulty o f solving the P=NP? problem we have considered to modify 
the realm o f recursive function theory instead. We propose in the following 
section the adoption o f an alternative acceptation convention for the 
nondeterministic version o f the Turing machine for recursive function theory such 
that the difference we suspect between determinism and nondeterminism in 
complexity theory can easily be established in the unbounded case (Spaan, 
Torenvliet, and van Emde Boas 1989, p. 188).

Given the difficulty o f the P versus NP problem, it is understandable that some will

propose novel and indirect approaches to the problem. Still, there is something ad hoc,

within this number o f steps then M  halts and accepts also, else M  halts and rejects." Of 
course, the Halting problem is solvable if we impose time bounds— if we know how long 
to wait, we let the computation unfold for that period of time and see whether the input 
has been accepted or not. The Halting problem gets its teeth when we can not say a- 
priori how long it will be before a machine accepts its input; that is, if  we do not know 
how long it will be before an machine accepts, we can never be sure i f  we have waited 
long enough before we say that the machine rejects. I think what Spaan, Torenvliet, and 
van Emde Boas 1989 mean to say is that if  M' accepts then it does so after some finite 
amount o f time, otherwise we can rely on the fact that M is a fair nondeterministic 
machine to wait out a divergent computation "without risking infinite computations" 
(Spaan, Torenvliet, and van Emde Boas 1989, p. 192). But more important than the 
technical details o f the proof, or even whether the proof flies, for that matter, is the fact 
that Spaan, Torenvliet, and van Emde Boas have been motivated to start re-thinking long
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perhaps even desperate, about redefining a notion so that a problem that was once 

contained in the theory of computational bleeds into the theory of recursive functions. Is 

this progress or regress? Indeed, nondeterminism is a conservative assumption, and 

hence, well-understood in the theory o f recursive functions. While it might be possible to 

shed new light on nondeterminism in complexity theory by imposing the sort of 

distinction that Spaan, Torenvliet, and van Emde Boas propose, it might also be the first 

step toward a degenerating research program where a recalcitrant problem is explained 

away by tinkering with a more basic assumption.

4.3 Moving beyond the Turing machine

Finally, there is talk of moving "beyond" the Turing machine. The idea here is to 

view the P^NP conjecture as a theoretically roundabout way o f marking the real world 

distinction between the problems which are tractable in an absolute sense and those 

which are tractable when CPU time is sold by the second. That is, there are known 

algorithms for solving all the problems in NP, but they typically involve an exhaustive 

search of an exponential search space. Hence, they take a prohibitively long time to 

perform.

There is discussion of exploiting physical analogues (e.g., quantum mechanical 

systems or chaotic systems) in which the combinatorial explosion inherent in 

nondeterministic algorithms is conveniently collapsed by the physical system. There is 

even discussion o f  a physical version o f Church's thesis relating the sense o f  computable 

to whatever it is that can actually be computed by a physical device. Unfortunately, none

standing definitions and equivalence results.
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o f  this has much to do with the original Church Turing thesis (at least according to some 

o f  those discussing the idea, see Pitowsky (1990)) and is thus unlikely to help us 

reconcile our conflicting issues about nondeterminism. Our concern is not so much 

whether a problem in NP can be solved quickly, but whether the underlying notion of 

nondeterminism can be reconciled with our intuitions about algorithms.

O f course, we do well here to recognize the emergence o f intuitions about 

nondeterminism in the physical sense. Indeed, it seems there is something to say about 

the possibility o f using the nondeterminism inherent in a quantum mechanical system to 

address the sense of nondeterminism inherent in the P versus NP problem. Unfortunately, 

the physical sense o f nondeterminism and the theoretical sense o f nondeterminism seem 

to be at odds. In fact, Pitowsky distinguishes between the physically computable and the 

theoretically computable and goes on to talk about NP-complete problems which might 

have physical polynomial time solutions even if  it happens theoretically that P*NP 

(Pitowsky 1990). The possibility seems likely (provided we figure out how to build a 

quantum computer) since it is widely believed that P*NP. What would we say in such a 

situation? What would it mean to say that a problem like SATISFIABILITY is 

theoretically intractable if eventually happens that it is decidable in polynomial time by a 

quantum computer? In such a situation, the physical sense o f nondeterminism would not 

illuminate the theoretical sense, it would instead render it moot.

O f course, it is also possible that we will never build a quantum computer (maybe 

P?tNP and there is no way around it) or perhaps we build a quantum computer and prove 

that P=NP. In both these cases the relation between the physical and theoretical sense of
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nondeterminism would be more obvious. In one case it would be clear that the theoretical 

sense o f intractability is absolute, in the other case we'd find that quantum computing is 

overkill. In the meantime, however, it is hard to see how to relate the physical and 

theoretical intuitions about nondeterminism.

The idea of a nondeterministic Turing machine is rooted in a long tradition in 

theoretical computer science and during the course o f that tradition several ideas about 

nondeterminism have emerged. In particular, the nondeterministic Turing machine has 

been used to think about algorithms, resource bounds and the classification of 

mathematical problems. Although the tradition has implicitly established a presumption 

o f continuity in both the historical and conceptual development o f nondeterminism, it 

should be clear by now that such a presumption is ill-founded. The nondeterministic 

Turing machine cannot be adduced as evidence for the Church Turing thesis, and at the 

same time, be presented as a patently "unrealistic" model o f computation. We cannot 

reconcile intuitions about machines with intuitions about inspired guessing.
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IV. A Second Look at the Received History

0. Overview

In this chapter we will revisit the history presented in the last chapter. As we have 

seen, there are a handful o f watershed papers in the development o f  nondeterminism. 

Unfortunately, none of these papers contain an explicit reference to the introduction of 

the nondeterministic Turing machine, nor do they reveal a unified context in which we 

can understand the theoretical motivations for nondeterminism. Our goal below is to 

place the received history in a more critical light and thereby reinforce the philosophical 

concerns we raised in the last chapter.

1. Introduction

We have argued that it is difficult to make philosophical sense o f the 

nondeterministic Turing machine; now we will see that it is hard to make historical sense 

of it as well. We begin where we left off in the last chapter by noting that the received 

history never really pins down a date for the formal introduction o f the nondeterministic 

Turing machine. There are vague allusions to the interplay between formal language 

theory, automata theory and computation theory, but explicit references to the first 

nondeterministic Turing machine are conspicuously absent. We get closer to an actual 

date with Greibach's citation o f Evey's 1964 dissertation for the proof o f equivalence 

between unbounded deterministic and nondeterministic Turing machines. In fact, Evey 

himself, having taken some care with questions o f  priority, claims his proof "appears to 

be new simply because nondeterministic Turing machines have not been discussed"
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(Evey L963, p. 2-71).1 Unfortunately, the received history is inadequate. For starters, it 

pins down the wrong date for the introduction of the nondeterministic Turing machine. 

But the problems run much deeper than just a quibble about dates. Without a firm sense 

of when the nondeterministic Turing machine was introduced, we cannot understand why 

it was introduced which makes it all too easy to overlook philosophical tensions.

To sort things out we must start anew. Contrary to the received view, the history 

of the nondeterministic Turing machine really begins nearly thirty years before the Evey 

dissertation with Turing's seminal 1936 work. There we find the theoretical discussion of 

nondeterminism in Turing's so-called choice machines. Moreover, that discussion comes 

at a crucial juncture in the argument for Turing-machine computability as an adequate 

account o f effective computability. Unfortunately, Turing's discussion of choice 

machines is also rather brief and it seems to have been overlooked or, perhaps, forgotten 

by his immediate successors who focused exclusively on deterministic computation. The 

notion of a nondeterministic machine does not surface again until 1959 with Rabin and 

Scott's (re)introduction of nondeterministic automata. Although Rabin and Scott have the 

same idea in mind, their motivation for considering nondeterminism was very different 

from Turing's. Next, there is Kuroda's 1964 proof for the equivalence between type-1 

grammars and the languages accepted by nondeterministic linear-bounded automata. 

Kuroda's proof is important not only because it completes the work Chomsky began 

relating formal grammars to automata, but also because on the received view, the

1 In fairness to Evey, we should note that he is not really interested in the Turing 
machine perse; rather, his goal is to use the pushdown store to achieve greater

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

nondeterministic linear bounded automaton marks a confluence o f ideas concerning 

computation, determinism and resource bounds.2 Finally, there is Hartmanis and Steams 

(1965) and the subsequent work o f Cook and Karp wherein the connections between 

determinism and resource bounds find their modem expression.

Our history o f nondeterminism is thus divided into four episodes. In the next 

section we will look at Turing's work in the '30s and try to understand what he thought he 

had achieved by introducing the choice machine. In §3 we will explain away the 20-odd 

year absence o f the nondeterministic Turing machine before looking at Rabin and Scott's 

work. We will also make note o f some independent developments in the Soviet Union. §4 

will be devoted to a discussion of the theoretical climate of the early '60s and the 

concerns that would ultimately lead to a theory o f computational complexity. We will 

note the emergence o f conflicting intuitions in the early '60s as researchers were driven 

by the desire to develop a realistic theory o f computing and, at the same time, were 

"learning to think nondeterministically." Finally, in §5 we will look at Hartmanis and 

Steam's seminal paper, which initiated a robust theory of complexity, and at the papers of 

Cook and Karp, which together defined the theory's central methodological approach and 

its most famous open problem.

In many respects, the history we describe here will resemble the received history 

we discussed in the last chapter; we will recognize the same mix o f influences and we 

will examine the same classic papers. There is, however, an important difference. Where

theoretical unification among abstract machines (and grammars).
2 Cf. (Hartmanis and Hunt 1973).
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the received history emphasizes continuity and a seamless flow of ideas, we will find

discontinuity and a variety o f conflicting intuitions.

2. Turing's Nondeterministic Turing Machines

In §2 o f his 1936 paper, Turing defines automatic machines and contrasts them

with so-called choice machines:

If at each stage the motion of a machine (in the sense o f § I) is completely 
determined by the configuration, we shall call the machine an "automatic 
machine" (or a-machine).

For some purposes we might use machines (choice machines or c-machines) 
whose motion is only partially determined by the configuration ...When such a 
machine reaches one of these ambiguous configurations, it cannot go on until 
some arbitrary choice has been made by an external operator (Turing 1965a, 
p.l 18, emphasis in the original).

Unlike an automatic machine, a choice machine needs the input of an operator to keep it 

running. We might wonder whether this makes choice machines incomplete or defective 

in some sense, but let us postpone that question and note in the meantime that the formal 

distinction between a and c-machines is the same distinction we now mark with the terms 

deterministic and nondeterministic. The choice here is what to do next given a particular 

combination of state and input and so, mathematically speaking, we have the familiar 

distinction between an automatic (i.e., deterministic) machine which is defined by a 

transition function and a choice machine (i.e., nondeterministic) machine defined by a 

transition relation. Moreover, the essential mathematical intuition we identified in 

Chapter 3, that o f the nondeterministic machine's inspired guess, is also evident in 

Turing's discussion o f choice machines insofar as we might think of the operator
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knowing exactly what the machine needs to do next.

The choice machine does not appear again until §9 when Turing describes in a 

footnote how an automatic machine can be constructed to do the work of a choice 

machine. The problem is to construct a Turing machine to enumerate theorems in 

Hilbert's first order logic. Although Turing never discusses the details, it is easy enough 

to describe how a choice machine might work. For example, given an axiom as input (or 

axioms, or perhaps other theorems) a choice machine can scan the input, determine 

whether any o f the rules o f inference apply (a purely syntactic determination) and then 

prompt the operator to choose among the appropriate rules. With the inference rules 

"hard-coded" as subroutines in the machine's transition table, the machine takes the 

operator input, jumps to the corresponding subroutine to apply the rule (another purely 

syntactic task), and finally outputs the resulting theorem. With some careful 

bookkeeping, the operator can continue to feed in axioms (and previous output) as input 

and thereby enumerate first order theorems in almost any order he pleases. Clearly, 

writing out the actual transition table for such a machine would involve some fairly 

tedious detail, but there is nothing tricky here; the operator does the thinking and the 

machine does the all the syntactic grunt work.

Turing's ultimate goal, however, is to describe an automatic machine to 

enumerate theorems and at first it is not obvious how this might be done. Indeed, a 

machine can determine which rules apply and it can apply them, but deciding which 

particular rule to apply hardly seems mechanical—hence Turing's image o f an external 

operator making all the decisions. So how do we get rid o f  the operator? The answer is to
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replace inspiration with exhaustion. Rather than hanging at some point in a derivation 

waiting for an operator to choose a particular rule o f inference, an automatic machine 

will draw every possible inference every time. The trick is to mechanize the bookkeeping 

so the automatic machine will generate theorems systematically, outputting each and 

every theorem without ever getting lost in an endless derivation. There are many ways to 

do the bookkeeping. For example, starting with all the axioms printed (and suitably 

delimited) on its tape, an automatic machine might scan the left-most axiom, determine 

which rules apply, enter each o f the appropriate subroutines in some prescribed order 

(where, as before, the inference rules have been hard-coded into the control o f the 

machine), append the resulting theorems to the end of the tape all before moving onto the 

next left-most axiom. Having applied each o f the appropriate inference rules once to all 

the axioms the machine would start again with the left-most axiom and apply all the 

appropriate rules twice all the while appending the results to the end of its tape. Left to its 

own devices, the automatic machine will continue to grind through derivations o f ever 

increasing length and thereby arrive (eventually) at every theorem that could be 

discovered by an operator working with a choice machine.

It is remarkable that an automatic machine can do the work o f a choice machine, 

even though an operator working with a choice machine can produce a potentially 

infinite stock o f theorems in any order he pleases. Things work out this way only because 

at any point in a derivation an operator can choose from at most finitely many rules of 

inference; hence, there are only finitely many distinct derivations o f a given length. The 

behavior o f  the choice machine— that is, the sequence of decisions the operator makes—
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can be systematically described. Turing exploits this fact by way o f a straightforward

arithmetization of choice sequences:

We can suppose that the choices are always choices between two possibilities. 
Each proof will then be determined by a sequence o f choices ih iz, ..., tn (/, = 0 or 
I, iz = 0  or 1,..., in = 0  or I), and hence the number 2 " + i\2nA + i2l n'2 + ... + i„ 
completely determines the proof. The automatic machine carries out successively 
proof I, proof 2, proof3 ... (Turing 1965a, p. 138).3

Here, finally, is the smoking gun we have been looking for. Although brief, 

Turing's three sentence discussion of choice machines and automatic machines provides 

just enough detail to construct a full blown proof for the equivalence between 

deterministic and nondeterministic Turing machines. Hence, credit for the 

nondeterministic Turing machine and the proof of its equivalence to the deterministic 

machine should be given to Turing and not, for example, to Evey nor anyone else 

working in the late '50s or early '60s. It is odd that the paper that first introduced the

3 There are few technical points to make here: First, there is no loss in generality in 
restricting our attention to choices between two possibilities. Suppose we are given a 
machine that must choose among n possibilities, c l5 c2, ..., c„ (where n>2 ), at some point 
in its computation. A choice among n possibilities can be simulated by series of choices 
between two possibilities in the following way: We introduce new choices als a2, ..., a„.2 

("a" for "all the other choices") to the original set o f choices cb c2, ..., c„. Rather than 
choose among all n possibilities at once, the machine first chooses between C[ and at, 
then (if necessary) between c2 and a2, ..., then (if necessary) between cn.i and c„ (see 
Hopcroft (1979, pp. 92-93) for their proof o f the Chomsky Normal Form theorem).

Second, there is a subtlety in Turing's coding scheme. At first blush, it might 
seem that Turing is simply using binary numerals read as strings from left to right to 
represent a sequence o f choices. This is almost correct, but we must remember that 
leading zeroes are significant. Hence, 2" +■ /12"*1 + h T '1 + in gives a decimal expression 
for a binary string o f length n allowing for the possibility that we might be coding a 
string with leading 0 's (or perhaps all 0 's).

Finally, there is an unmistakable family resemblance between Turing's '36 proof 
and the equivalence proof given in (Hopcroft and Ullman 1979, p.164).
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Turing machine is the last place people think to look for the nondeterministic Turing 

machine, but it is not too surprising given that Turing himself misdirects the reader's 

attention. In fact, immediately after introducing the choice machine in §2 Turing 

announces, "In this paper I deal only with automatic machines" (Turing 1965a, p .118). 

Given that disclaimer, the reader is likely to forget about choice machines altogether 

unless he reads the appendix to Computable Numbers. There, after reminding the reader 

about the footnote in §9, Turing makes a second appeal to choice machines in his proof 

o f  the equivalence between Church's X-definable terms and his own computable 

sequences. But once again, it is easy to overlook Turing's mention of the choice machine; 

the reference is so brief as to appear incidental and it comes at a point when Turing 

seems to be wrestling with foundational questions about his entire approach. And thus we 

come to a more difficult question: if  it is so easy to overlook the choice machine in 

Turing's analysis of the computable numbers why did he bother with it at all?

The answer is not straightforward and it requires that we disentangle several 

issues. To begin, let us consider the context in which §9 and the appendix were written. 

Recall that for his proof of the unsolvability o f the Entscheidungsproblem to work,

Turing needs a problem unsolvable by any systematic means; nothing is gained by 

proposing a notion o f computable that happens to be just narrow enough to preclude a 

solution to the Entscheidungsproblem. So, how narrow is too narrow? Or, to put the 

question in its more familiar form, Is Turing's notion o f computable wide enough?

Turing himself poses the question in §9, "The extent o f the computable numbers," but 

despairs, "All arguments which can be given are bound to be, fundamentally, appeals to
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intuition, and for this reason rather unsatisfactory mathematically" (Turing 1965a, p. 135). 

It is well known, however, that the appendix to Computable Numbers was added after 

Turing became aware o f Church's work and its application to the Entscheidungsproblem. 

Suddenly there were three formal counterparts to the informal notion o f algorithm, two of 

which (thanks to Kleene's 1935 work on ^-definability and the general recursive 

functions) were provably equivalent. Church's work raised the mathematical possibility 

that Turing's notion of computable might prove to be too narrow. The appendix is more 

than just a nod to priority; the demonstration that any number (or function) that is X- 

definable is computable, and conversely, is crucial because it establishes Turing's notion 

of computable as a legitimate alternative to the two formalisms described by Church 

(1965).

Obviously, the demonstrations o f extensional equivalence in §9 and the appendix 

dovetail nicely with arguments that the notion of computable is sufficiently wide. The 

fact that several independent accounts can be shown mathematically to pick out the same 

class o f functions is compelling evidence that we have identified a robust notion of 

computable. In this light it is tempting to read the arguments o f  §9 and the appendix as 

more of the same kind of evidence—another two results in a long list o f equivalences. 

Unfortunately, if  we think only about equivalence we come no closer to understanding 

the role o f the choice machine in Turing's argument. In fact, in the context o f an 

equivalence theorem, Turing's discussion o f choice machines seems hopelessly far 

removed from the end-result. Turing introduces the choice machine to enumerate 

theorems in Hilbert's logic, then argues that such a machine can be replaced by an
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automatic machine, all to establish a result that is, ultimately, just a lemma needed in the 

proof that any number defined by a Hilbert-style first-order theory is computable and 

vice versa. Not only are Turing's references to the choice machine deeply buried, but 

those willing to follow this long chain of argument back to its beginnings are likely to 

regard the choice machine as an inessential, heuristic step in a more important 

equivalence proof.

To understand Turing's appeal to the choice machine, we must reconsider the role 

o f equivalence results. While such results are significant in their own right, they are not 

at the center of Turing's attention. In fact, the arguments for the extent o f the computable 

numbers come in three kinds. There is the "direct appeal to intuition," the celebrated 

analysis o f man-as-computer working with a pen and paper. And there is an argument by 

way of example as Turing points out "large classes o f numbers which are computable." 

The argument for extensional equivalence is actually sandwiched between these two 

other arguments. Moreover, it comes with an important qualification: the equivalence 

proof is given because "the new definition has a greater intuitive appeal" (Turing 1965a, 

p. 135). Although Turing's remark is made parenthetically, it suggests that his goal is not 

an equivalence result per se, but rather to show how a given formalism can yield quite 

naturally to a computational analysis. O f course a formal proof o f equivalence cannot 

establish one definition as more natural or more intuitive than another, but there is room 

for such subjective judgments when we consider the constructions that make up an 

equivalence proof—and it is here that the choice machine fits into Turing's argument.

The more difficult implication in the equivalence proof o f §9 is showing that any
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number that is definable is computable. (Turing sketches the proof for the converse 

implication in a single sentence.) Turing's sense o f  definable is peculiar; rather than give 

first-order definitions of numbers directly, Turing focuses on the binary sequences that 

represent numbers, in particular, those sequences that can be described by a finite 

conjunction o f first order formulae. The idea is that a sequence will be definable when it 

can be described bitwise, so to speak. More formally, Turing introduces a predicate G J f )  

for each sequence a , which is read as "the x-th figure of a  is 1." { - G f x )  is read as "The 

x-th figure o f a is 0.") Sequences are definable in Turing's sense only if, for each n e  N, 

there is a provable formula asserting that the nlh bit o f the sequence is I or there is a 

provable formula asserting that the nlh bit is 0 (but not both). So, given a definable 

sequence a, we construct a machine to proceed digit by digit; to compute the j lh digit the 

machine enumerates theorems until it finds a formula asserting Ga(j), in which case it 

prints a "I," or it finds a formula asserting~Ga(j), in which case it prints a "0" before 

moving to the next (j-H)Ih digit. By hypothesis, exactly one o f the two formulae is 

provable and hence the machine always prints either a " 1" or a "0 " for each digit in the 

sequence. There is nothing surprising here: the machine works exactly as one would 

expect given Turing's sense o f  definition. But we have yet to see a natural, computational 

account o f definable. Indeed, the real question is whether Turing's computational analysis 

Is itself intuitively appealing; it is not enough to piggyback an account o f computable 

onto an admittedly peculiar sense o f definition. Whatever intuitive appeal there is in 

Turing's proof rests with the operation of the machine, especially when it comes to 

enumerating theorems. Unfortunately, Turing does not specify the automatic machine.
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Instead, he claims that "The author has found a description o f such a machine" (Turing 

1965a, p. 138). He does, however, preface that remark: "It is most natural to construct 

first a choice machine (§2) to do this. But it is then easy to construct the required 

automatic machine" (Turing 1965a, p. 138). Again, some might claim here that the choice 

machine is heuristic; as Turing himself goes on to say, the goal is to go from choice 

machine to automatic machine and the choice machine helps with this step. Intuitively 

speaking, however, our interests run in the opposite direction. The choice machine 

grounds the automatic machine. Indeed, there is nothing natural or intuitive about an 

automatic machine spitting out theorems, but there is something familiar about the 

operation of a choice machine: the combination o f operator and machine produces 

theorems in exactly the same way a mathematician working alone would. Even if we 

require the automatic machine for a formal equivalence proof, the choice machine makes 

the analysis intuitively compelling. The progression from choice machine to automatic 

machine shows off the computational aspects of proving theorems more clearly, and 

more naturally, than would be possible if Turing had jumped directly to the description o f 

an automatic machine. In this sense, the choice machine is more than heuristic; it gives us 

reason to believe that the proof, and indeed the entire analysis, is on the right track.

Similar remarks apply to Turing's use of choice machines in the appendix. As we 

saw above, the formal equivalence between the computable and the ^.-definable numbers 

is crucial to Turing's argument, but it is also significant that the choice machine o f §9 can 

do the work o f  conversion in the ^-calculus. There is, o f course, a deliberate and obvious 

similarity between derivation in a formal system and conversion in the X-calculus.
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Nevertheless, it is not clear that either will yield to Turing's computational analysis; even 

worse, it would be disconcerting if Turing could account for one formalism but not the 

other. The fact that the choice machine naturally relates both formalisms to Turing's 

notion o f computable is, again, intuitively compelling. As we would hope, similar tasks 

are performed by similar machines.

The emphasis on intuitively appealing proofs o f equivalence is clear not only in 

Turing's 1936 work but also in his (1937). In that paper, he gives a more detailed 

demonstration that every ^.-definable function is computable, as well as a proof that 

every computable function is general recursive; these results together with the Kleene's 

1935 proof that a function is ^.-definable if and only if it is recursive established the 

equivalence between all three definitions. It might seem that Turing's work here is 

superfluous given that he had already sketched a proof for the equivalence o f computable 

and ^.-definable sequences in the appendix to the 1936 paper, but he goes on to say in the 

1937 paper,

The identification of'effectively calculable' functions with computable functions 
is possibly more convincing than an identification with the ^.-definable or general 
recursive functions (Turing 1937, p .153).

Davis (1982) gives us good reason to believe that Turing was indeed correct when 

he suggested that his account of'effectively calculable' might be more convincing.

Kleene echoes similar sentiments, "[f]or rendering the identification with effective 

calculability the most plausible— indeed, I believe compelling— Turing computability 

has the advantage o f aiming directly at the goal as is clear (and as Turing modestly 

suggested in 1937 p .153)" (Kleene 1981, p. 61). In fact, it is well documented that Godel
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found Turing's work on effective computability far more compelling than the work done 

by Church or Kleene. Davis points out that Godel (and to some extent, Post) believed that 

an adequate analysis o f  effective procedure would begin with the familiar intuitions about 

algorithms and only then work toward a particular formal definition. Turing proceeds in 

exactly that way. For example, the 1936 paper begins, famously, with Turing's 

description of man-as-computer, where the extraneous details are stripped away until 

Turing arrives at the essential operations that define the Turing machine. Likewise, in his 

1937 proof that every k-definable function is computable. Turing first describes 

constituent machines which perform mundane tasks on k-terms such as marking symbols, 

comparing symbols, matching parentheses, swapping symbols and searching a string for 

a given symbol. These machines are then composed in an entirely straightforward 

manner to produce a machine that enumerates all the possible immediate conversions 

from a given k-term (i.e., the machine either reduces or expands the k-term), and hence 

the entire process o f k-conversion is shown to be mechanical. The proof proceeds by way 

of a piece-meal analysis, which starts at a familiar, intuitive level and works its way to a 

more formal result.

Turing's progression from familiar to formal is best exemplified by the choice 

machine. Let us think about deduction in very general terms: particular formal systems 

are characterized by the axioms they admit, or the rules of inference they employ, while 

deduction more generally can be characterized as a series o f choices. The difference 

between deriving one theorem rather than another is, at the most basic level, a matter of 

deciding to apply one rule rather than another. Turing presents the choice machine to
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make this familiar aspect o f theorem proving mechanical. Indeed, as Wang points out, 

the choice machine corresponds to "what mathematicians in fact do" (Wang 1974, p. 84). 

That is to say, the choice machine allows Turing's computational analysis o f two 

different formal systems to start off on the right intuitive foot. Turing moves from the 

familiar to the formal. By contrast, Church and Kleene began with a formal definition, 

which was only later identified with the class o f effectively computable functions. This is 

not to say that the work of Church and Kleene was any less important but, rather, to 

underscore Turing's emphasis on intuitively compelling accounts of computable.4

4 But we should mention in passing that, despite their mathematical significance, 
neither Kleene's account o f the ^.-definable terms nor Church's original appeal to the 
general recursive function hold much intuitive appeal as accounts o f "effectively 
calculable." For instance, Kleene identifies algorithms for computation with a process o f 
repeated reduction, which starts with the term representing the function as it is applied to 
a numeral and ends with a unique normal form for the terms that represent numerals. 
While Kleene's approach makes for a perfectly reasonable algorithm, it also makes for 
some hairy function terms. In fact, Kleene reports that coming up with a term to compute 
the predecessor function—a function trivially computed by a Turing machine—was 
something o f a discovery (see Kleene 1981, pp. 56-57). Moreover, as pointed out by 
Davis (1982), even Godel had a hard time with Kleene's 1936 proof of the equivalence 
between the general recursive and ^.-definable functions. As for Church's appeal to the 
general recursive functions, although the primitive recursive functions capture intuitions 
about effectiveness in a rather obvious way, Ackermann's discovery o f an intuitively 
computable function that is not primitive recursive makes formal definitions o f general 
recursive functions decidedly less perspicuous. Suddenly recursion became a business o f 
substitution o f the most general kind. We might "see" addition and multiplication in the 
set of equations:

But it is hard to see minimization, F* anywhere in the recursion equations given in 
(Church 1965, p.97) for a two-valued recursive function F(x,y) (minimizing on y):

+(x, 0)=0, +(x,S(y))=S(+(x,y)), *(x,0)=0, *(x,S(y))=+(x, *(x,y)).

iz(l» 2) = 2 , g2(x, 1) =  i2(f2(x, 1), 2),
hi(S(x), y) =  x, j 2( I , y) =  y,

i2(S(x), 2) = I, 
i2(x, S(S(y))) = 3 ,
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Although we just have taken a somewhat lengthy detour through the equivalence 

results o f the mid 1930s, our goal is not to embark on the intellectual history o f the 

Church Turing thesis. Rather, by looking seriously at the way Turing presents these 

results, we might understand his rather brief references to the choice machine. Contrary 

to the recent work o f Spaan, Torenvliet, and van Emde Boas (1989) it does not seem that 

Turing regarded choice machines "an aberration to the notion o f computability." The fact 

that such machines depend on the input o f an external operator does not make them 

defective; it makes their operation more familiar and, hence, more natural. Moreover, 

Turing's emphasis on naturalness proves to be important both historically and 

conceptually. In summary, Turing presents the choice machine as a natural mechanical 

analogue for reasoning in formal systems. The behavior o f the mathematician is clearly 

reflected in the workings of the choice machine, which makes Turing's computational 

analysis all the more compelling.

2. Rabin and Scott's Nondeterministic Automata

In the last chapter we argued that the formal notion o f a nondeterministic 

algorithm is far removed from the intuitive notion. Now we can appreciate the irony in 

that development: initially the choice machine was presented as an intuitive touchstone, 

but now it is the source o f some very counter-intuitive results. What's more, this 

conceptual break reflects a historical discontinuity as well. Although our notion o f

where the functional variables f2 and f, denote the functions F  and F* respectively and 2

hifgifx, y), x) =  j 2(g2(x, y), y), 
jiCSfx), y) =  x, g2(x,s(y)) =  i2(f2(x, S(y)),

f ,(x )= h 2( l ,x ) , 
g2(x, y)), i2(x, I) =  3,
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nondeterminism can be found fully articulated in Turing's 1936 discussion of choice 

machines, and although that discussion is motivated by the very concerns for naturalness 

that made Turing's work so influential, the idea of a choice machine completely 

disappears for some twenty years. It is not until Rabin and Scott's 1959 article that the 

idea o f a nondeterministic machine resurfaces. We can only speculate about the causes o f 

this historical gap. As we indicated above, Turing's mention of the choice machine is 

brief, and he does a good job deflecting the reader from what little discussion there is. It 

is also possible that the choice machine was ignored as a theoretical oddity in the push to 

build machines that actually do something. Whatever the reasons, by 1959, both the 

theoretical and practical state o f the art in computing had changed dramatically; Rabin 

and Scott's nondeterministic automata addressed concerns entirely different from those 

that motivated Turing.

By 1959, the Turing machine was "widely considered to be the abstract prototype 

o f digital computers" (Rabin and Scott 1959, p. 114). Recall from Chapter 3 that, at 

roughly the same time, Rogers described the theory o f recursive functions as an 

investigation into what might be accomplished by a digital computer working with 

"explicit deterministic programs of instructions" (Rogers 1969, p. 130). The question that 

had plagued Godel, whether an adequate formal account o f recursion was even possible, 

had lost its urgency by 1959. In fact, Rabin and Scott found themselves dealing with an 

altogether contrary worry that the Turing machine might be too general a model o f 

computation. The ability to compute any recursive function was overkill for most

and 3 are abbreviations for S(l) and S(S(1)) respectively.
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practical applications. Hence Rabin and Scott focused their attention on the finite 

automaton as a more restricted model o f  computation.

A finite automaton is, essentially, a Turing machine without the tape.5 The 

automaton is finite in the sense o f having only finitely many internal states, which must 

be used for both memory and control. In this way, the potentially infinite number of 

combinations possible in a Turing machine between state and input are avoided and, it 

was hoped, "a better approximation to the idea o f a physical machine" would be 

achieved (Rabin and Scott 1959, p.l 14).6 But the theory of finite automata was also 

pursued for its own sake, and toward that end Rabin and Scott introduced 

nondeterminism as a possible, and they claimed, novel generalization of the finite 

automaton. Like the nondeterministic Turing machine, a nondeterministic automaton is 

described by a transition relation rather than a transition function; at some (perhaps 

every) step in its computation a nondeterministic automaton will assume one state among

5 Actually, Rabin and Scott originally imagined finite automata as "defining sets of 
tapes." The image was o f an automaton scanning a finite, segmented input tape one 
square at a time, and upon reaching the end o f the tape (after a single pass) either 
accepting or rejecting the input. The set o f tapes thus accepted is the set o f tapes 
"defined" by the automaton. These days we talk about the language accepted by a 
machine rather than the tapes defined by it, but the idea is the same. (In their formal 
exposition, the word tape is an abbreviation for finite sequence ofsymbols .) There is, 
however, a surprising result that hangs on the tape imagery. Rabin and Scott not only 
considered what could be decided after a single, one-way pass over an input tape (the so- 
called one-way automaton), but they also considered what could be decided by a machine 
allowed to run back and forth over its input (the so-called two-way automaton). It can be 
proved that two-way automata are no more powerful than one-way automata.

6 But not everyone thought this was a good idea; see, e.g., McCarthy (1962) who quips 
that approximating the finiteness o f  the IBM mainframe computer is hardly practical (or 
usefUl). Rabin and Scott are more sanguine: "An actual existing machine may have 
billions o f such internal states, but the number is not important from the theoretical
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a handful of possible next states. How, exactly, this happens is left to the reader: "We are 

not concerned with how the machine is built but with what it can do" (Rabin and Scott 

1959, p. 115). All that matters is that some sequence of state-transitions leads to an 

accepting state; if no such sequence is possible, the input is rejected. Moreover, as with 

Turing machines, it can be proved that the nondeterministic automata are no more 

powerful than deterministic automata; any language decided by a nondeterministic 

automaton can be decided by a deterministic automaton.

As before, we must ask, why bother with a generalization that proves to be no 

more general? Unlike Turing, who introduces the choice machine to buttress the intuitive 

appeal o f his account, Rabin and Scott are motivated by purely pragmatic concerns. For 

them nondeterminism yields a useful "versatility," which can be "utilized for showing 

quickly that certain sets are definable by automata" (Rabin and Scott 1959, p. 115). Their 

emphasis is on shorter proofs for well known results. Their proof of equivalence between 

deterministic and nondeterministic automata is likewise unrevealing from a philosophical 

perspective. While we can see something computational in the exhaustive, deterministic 

simulation of a nondeterministic Turing machine, such intuitions are harder to find in the 

workings of an equivalent deterministic automaton. Instead, there is a more mathematical 

(and less intuitive) construction that considers the power set o f the automaton’s set of 

states. Given a nondeterministic automaton the idea is to consider all the states that might 

be reached from a given combination o f state and input. This set o f states essentially 

becomes a label for a single new state in the constructed deterministic automaton. The

standpoint—only the fact that it is finite" (Rabin and Scott 1959, p. 115).
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nondeterministic transition from a given combination o f state and input which leads to 

any one o f a number o f  states now leads to a single state and thus the transition relation 

o f the nondeterministic automaton becomes a transition function for a deterministic 

automaton .7 We might say that the deterministic automaton "keeps track in its finite 

control o f all the states that the NFA [i.e., nondeterministic finite automaton] could be in 

after reading the same input" but it is not clear that the sense o f simulation here is the 

same as that o f a deterministic Turing machine simulating a nondeterministic machine. 

Indeed, in exactly the same way that we construct a universal machine, we can construct 

a single deterministic machine that takes as input the description o f any nondeterministic 

machine and its input. Given this input, the deterministic machine is then able to unfold 

the computation tree the nondeterministic machine. The sense of simulation is thus quite 

general and is inherent in the workings o f a single all-purpose machine. We might think 

o f such a universal machine in the same way that we think of emulation software that 

allows a Mac to run various programs written for a PC. The PC software executes as if  it 

were running on a Windows machine. Although there is an algorithm for constructing a 

deterministic automaton that accepts the language of a given nondeterministic automaton, 

there is no universal automaton in the sense we described above. The relationship 

between the given nondeterministic automaton and the deterministic is inherent in the

7 More formally, if  Q is the set o f states for the nondeterministic automaton, then 2e, 
the powerset o f  Q, is the set o f states for the deterministic automaton. Likewise, if  8  is the 
nondeterministic transition relation from QxL  to O, then we define a deterministic 
transition function S' from 2ex£ to 2Q as follows,

S'dqi, q2>—>qj. <r) =  fai, q2,.», q j  iff 5({q„ q2,..., q,}, cr) c  {qt, q2,.-,qk}-
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particular construction and the resulting deterministic device cannot "simulate" any other 

automaton. Moreover, except for some tendentious labeling, the two automata are 

distinct; they accept the same language, but its is hard to see the workings o f one in the 

behavior o f the other.

Rabin and Scott's 1959 paper is consistently cited as having first introduced the 

nondeterministic automaton (cf. Greibach 1981, p. 18). It is thus tempting to assume that 

Rabin and Scott present the first general discussion o f nondeterminism. But this is not the 

case; their discussion is neither first nor general. In fact, for Rabin and Scott 

nondeterminism is simply a convenient and conservative construction. Where Davis has 

described Turing's 1936 paper as "a remarkable piece o f applied philosophy"—a 

characterization that applies particularly well to Turing's discussion of choice 

machines— Rabin and Scott's discussion of nondeterminism is more applied mathematics 

than applied philosophy (Davis, 1982, p. 14).

Although it was an influential paper, Rabin and Scott's work leaves little room for 

philosophical discussion. I f  there is a philosophical moral to be drawn at all, it is to 

recognize the conspicuous lack of philosophy in the theoretical work o f the late 1950s—a 

theory that began some twenty years earlier amid pressing philosophical concerns. There 

was, however, another development in 1959 worth noting. As mentioned by Sipser 

(1992), and discussed more fully by Trakhtenbrot (1984), Russian theoreticians were 

worried aboutperebor, or brute-force algorithms. In particular, Yablonskii (1959) 

discussed problems that could be solved algorithmically in principal but which required 

prohibitive computational resources in practice.
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At present there is an extensive field o f problems in cybernetics where the 
existence o f certain objects or facts may be established quite trivially and, within 
the limits o f the classical definition o f algorithms, completely effectively, yet a 
solution is, in practice, often impossible because o f its cumbersome nature ... It is 
here that the necessity o f making the classical definition of an algorithm more 
precise naturally arises. It is to be expected that this will, to a greater extent than 
at present, take into account the peculiarities o f certain classes of problems, and 
may, possibly, lead to such developments in the concept o f algorithm that 
different types o f algorithms will not be comparable (Yablonskii (1959) p.401; 
also quoted in Sipser (1992)).

In many respects, the Russian notion o f a perebor algorithm anticipates the class 

NP. Recall (Chapter 3) that problems in NP are those for which a putative solution can be 

discovered nondeterministically and verified in polynomial time. Just as Yablonskii 

describes perebor problems, problems in NP have trivial solutions in the sense that a 

machine could work them out, but the number o f  possible solutions that must be tried is 

vast. "Algorithms" for NP-problems run in polynomial time only because we imagine a 

nondeterministic search to take the place of an exhaustive search of an exponential 

solution space. In this sense, NP is, oddly enough, a way of classifying those problems 

for which we have no polynomial-time solution. The algorithms we actually have for 

such problems are perebor algorithms— inefficient, brute-force searches.

Yablonskii's work is remarkable for two reasons: First, from a historical point of 

view it is worth noting his anticipation o f a class of problems that was not fully 

articulated in the West until 1972.8 Second, and more important from a philosophical

8 However, Yablonskii himself might not be too happy with the identification of 
problems solvable (only) by perebor with the complexity theorist's class o f  NP-problems. 
In fact, Trakhtenbrot (1984) reports that Yablonskii "distrusted the role that 
computational complexity and algorithm complexity could play in the perebor subject." 
Apparently, Yablonskii was something of a constructivist and he did not see how
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perspective, is the idea that the classical notion o f an algorithm might not adequately 

characterize the problems solvable by brute-force searches. If we allow ourselves to 

identify perebor searches with the "guessing" implicit in nondeterministic computation, 

Yablonskii's suggestion that we might be dealing with fundamentally different kinds of 

algorithm leaves us in an awkward position with respect to the proven equivalence 

between (unbounded) deterministic and nondeterministic Turing machines. How can 

incomparable notions o f an algorithm be proven equivalent? Does such an equivalence 

really support the Church Turing thesis? These questions underscore the concerns raised 

in Chapter 3, only now our worries are more general. Questions about the equivalence of 

deterministic and nondeterministic computation need not be tied to a particular open 

problem in complexity theory, but extend to the very notion o f a nondeterministic 

algorithm. We shall return to these questions in the next chapter.

3.1959-1965 and Kuroda's nondeterministic linear-bounded automaton

Trakhtenbrot (1984) recalls that Russian work on complexity theory proceeded 

"independently and in parallel" to the work going on in the West in the early 1960s. The 

fact that such work was independent, together with the fact that the Russian theoretical 

community itself was bitterly divided over Yablonskii's "proof' that certain perebor

diagonalization—and, by extension, a good deal o f complexity theory—could apply to 
the solution to combinatorial problems.

Yablonskii's mistrust o f complexity theory notwithstanding, his assertion that perebor 
might be unavoidable resonates with the our understanding o f the P versus NP problem. 
In fact, when we address that problem we are asking asks whether some problems are 
inherently difficult (i.e., the exhaustive exponential search is unavoidable) or whether we 
have simply not yet discovered an efficient way o f solving them. Yablonskii’s assertion 
about perebor amounts to an assertion that P^NP.
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algorithms were unavoidable, suggests that worries about incomparable algorithms might 

not have met with a wide audience outside the Soviet Union. What is more certain is that 

nowhere on the bibliographic trail to the landmark papers o f Cook (1971) and Karp 

(1972) is there any mention of the perebor conjecture.

In the early-to-mid 1960s Western theoretical research took on a more pragmatic 

slant. Rabin and Scott's motivation "to give a better approximation to a physical 

machine" would find expression in many other influential papers.9 For example, Yamada 

stated, "In using digital computers, it is important to know the time required to compute a 

given function"(1962, p.754). As a start to such a theory, Yamada introduced the notion 

o f real-time computation by way of a (restricted) Turing machine as one attempt at "a 

mathematical model for digital computers which is more realistic in particular aspects." 

Likewise, in their seminal 1965 work Hartmanis and Steams chose a multi-tape Turing 

machine as their model o f computation because "it closely resembles the operation of a 

present day computer"(p. 287). The time-bounded, deterministic Turing machine was the 

model o f choice to bridge the gap between the theoretical and the practical. The intuitive 

notion o f a time-step found a natural analog in the basic operations o f a Turing machine 

(e.g., one transition between states = one unit of time), and the well-established

9 Obviously, a theory is a theory about something and, in the case o f theoretical 
computer science, one would expect the work to apply to real computers. It does not 
follow, however, that the researchers o f the early 1960s were simply paying lip-service to 
a theoretical cliche. Quite the contrary, complexity theory had yet to establish itself at the 
time and it was important to make the potential real-world payoff clear. Contrast that 
situation with the present situation where complexity theorists whole-heartedly admit that 
their theory is premised, in part, on unrealistic models o f computation and often pursued 
for its own sake (cf. §2, Chapter 3).
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robustness o f the model itself provided a secure foundation for a general theory of 

computational complexity (i.e. a theory that is sufficiently invariant with respect to the 

model o f computation). Cobham (1964) used the time-bounded Turing machine to point 

out the wide range of functions that can be computed in polynomial time and by 1965 the 

identification o f the polynomial time algorithms with the class of tractable algorithms 

was made explicitly by Edmonds (1965).

It is not surprising that the nondeterministic Turing machine is conspicuously 

absent from the computer science of the early sixties. Given the theoretical desiderata for 

a model o f real-world computers and a characterization o f tractable algorithms, it would 

have made little sense to consider nondeterministic computation. A digital computer is 

characterized by a predicable flow of control, and from this point o f view, a 

nondeterministic Turing machine is more apt to be seen as a model o f a malfunctioning 

computer than a useful abstraction.

Still, there were theoretical applications somewhat removed from the computer 

science of the day where nondeterminism proved to be an interesting generalization. 

Recall that in 1959 Chomsky introduced his hierarchy relating formal grammars and 

automata. At each level of the hierarchy the question naturally arises whether allowing 

nondeterministic automata will affect the class o f languages accepted. Rabin and Scott's 

1959 equivalence proof showed that the class o f languages accepted at the bottom o f the 

hierarchy (i.e., the type-3 languages) is the same whether we consider deterministic or 

nondeterministic finite automata. It was also well known that the class o f languages 

accepted at the top o f the hierarchy (i.e., the type- 0  languages) is unaffected if we allow
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nondeterministic Turing machines rather than deterministic ones. 10 In the middle o f the 

hierarchy, however, determinism makes a difference. Although it was a routine matter to 

show that the class o f languages accepted by deterministic pushdown automata is 

properly contained in the class of all context-free languages (i.e. the type- 2  languages), 

Greibach recalls that in 1963 it was "an interesting open question whether [linear- 

bounded automata] corresponded to Type I grammars as [pushdown automata] to Type 2 

grammars" (Greibach 1981, P.24).

In 1964 Kuroda introduced the nondeterministic linear-bounded automata—

10 Common knowledge or not, it is still difficult to find explicit references to an 
original equivalence proof. For instance, Kuroda (1964) makes an apparent reference to 
the equivalence between the unrestricted grammars (type-0) and Turing machines to 
which he refers to as "Theorem 0.3." He remarks, "It is easy to see that Landweber's 
proof of Theorem 0.3 does not depend on the determinacy o f the automaton" (Kuroda 
L964, p.209). Here it seems we have found a reference, albeit elliptical, to an equivalence 
proof. There is, however, no such proof in (Landweber 1963). I am certain Kuroda meant 
to refer to Landweber's proof that every language accepted by a LBA is context sensitive, 
which Kuroda had earlier labeled as "Theorem 0.4." It would be a completely trivial typo 
except for the fact that Kuroda goes on to say ," and Theorem 4 remains valid, if we 
understand, under our convention, the phrase ‘linear-bounded automaton’ as meaning 
‘nondeterministic linear-bounded automaton’." At first glance, it seems that Kuroda is 
talking about the determinacy of both Turing machines and LBA's—even if that isn't 
really the case.
There is room for a more subtle obfuscation in Greibach's citation o f  Evey's 1963 proof 

o f the equivalence between (unbounded) deterministic and nondeterministic acceptors. I 
suppose this reference would be robust if we were to distinguish between Turing 
machines as transducers and Turing machines as acceptors. Strictly speaking, the choice 
machines Turing describes compute functions (where, e.g., f(l)=  the first theorem, f(2)= 
the second theorem, etc.), and hence they are transducers. Evey, on the other hand, 
describes machines that accept or reject their input. In this light, there are two proofs to 
consider and perhaps credit is due to Turing for his transducers and to Evey for his 
acceptors. But it is just as easy to view acceptors as transducers that compute 
characteristic functions. So even if, strictly speaking, Turing and Evey describe different 
machines, it is hard to view their discussions as (conceptually) independent with respect 
to questions about nondeterminism per se.
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essentially a nondeterministic Turing machine where the available work tape is strictly 

limited by the length o f the input—and proved that every context-sensitive language is 

accepted by some nondeterministic linear-bounded automaton. This result, together with 

Landweber's proof that any language accepted by a linear-bounded automaton11 is 

context-sensitive, establishes the equivalence between the Type-1 languages and 

nondeterministic linear-bounded automata. Kuroda's work is significant for several 

reasons. It completes the Chomsky hierarchy and, as mentioned in the last chapter, it 

marks a confluence of ideas; questions about computation, formal language theory and 

resource bounds can all be tied, both historically and conceptually, to questions about the 

nondeterministic linear-bounded automaton. From our present point o f view, however, 

the most remarkable aspect o f Kuroda's work is its seemingly contradictory legacy 

regarding nondeterminism. On one hand, Kuroda's work is celebrated as a first step 

toward a more thorough understanding of nondeterminism. For example, reflecting on 

the effort that went into establishing the correspondence between the Type-1 grammars 

and the linear-bounded automata Greibach reports,

11 Notice there is no reference to the determinacy of the automaton. In fact, following 
Myhill's original discussion (I960), Landweber's LBA's were deterministic. But as 
Kuroda points out (cf. note 13), there is no loss o f generality here. The main idea in 
Landweber's proof is to specify productions that mimic the behavior o f  an accepting 
automaton "in reverse." In other words, we construct a grammar that will generate strings 
representing complete configurations in an accepting sequence o f transitions in an LBA 
starting with the final accepting configuration. We introduce nonterminal symbols to 
record the state and the tape alphabet, and the productions are defined in a 
straightforward way from the machine's transition table. With respect to the grammar, it 
makes no difference whether a string on the left side o f the production leads to a unique 
string on the right.
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With hindsight, it is hard to see why this was a difficult problem at all. Part o f the 
reason was that we were not really used to nondeterministic machines—to 
thinking nondeterministically—and Myhill's paper defined only deterministic 
LBA's (Greibach 1981, p.24).

Presumably, Kuroda's work helped people "think nondeterministically." On the other

hand, Kuroda posed two questions in 1964: first, are the context sensitive languages

closed under complementation? and second, are nondeterministic linear-bounded

automata more powerful than deterministic linear-bounded automata? Although the first

question was, at long last, answered positively by Immerman (1988) (the second remains

open), the problems proved to be so difficult in the intervening years that in 1974

Hartmanis and Hunt lamented "our inability to answer them indicates that we have not

yet understood the nature o f nondeterministic computation" (Hartmanis and Hunt 1973,

p.3). Kuroda's 1964 work was a mixed blessing; whatever initial promise there was after

the completion of the Chomsky hierarchy must have faded quickly when it became clear

just how difficult it would be to think nondeterministically.

It is also strange that Kuroda (1964) figures so prominently in so many

discussions o f nondeterminism. This is not to deny Kuroda credit for introducing the

nondeterministic linear-bounded automaton, nor do I mean to overlook the influence o f

the questions he posed on subsequent research, but when we look at what Kuroda

actually said in 1964 we find that his discussion o f nondeterminism is quite brief. Having

devoted a full paragraph to the formal definition of a deterministic linear-bounded

automaton, Kuroda needs only a single sentence to define the nondeterministic linear-

bounded automaton as one where the transition function is multi-valued. There is also a
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perfunctory remark that on a given input, nondeterministic computation can lead to both 

accepting and rejecting states. 11 But there is none o f  the exposition one might expect 

from a paper in which the central result depends on the introduction of a nondeterministic 

device. In fact, there is no mention of determinacy at all in Kuroda's proof. Instead his 

efforts are directed toward showing a normal form theorem for context-sensitive 

grammars in which no string o f length greater than 2  appears in any of the productions 

and that such grammars are "length preserving" and "linear-bounded" in the sense that in 

any production, <p-»v|/, not involving the start symbol, the lengths of 9  and 9  are equal, 

and that if S  is the start symbol then if S-+EF then E=S. Kuroda claims, "It follows 

immediately from these lemmas that for any context-sensitive language there exists a 

linear-bounded automaton which generates it" (Kuroda 1964, p.214).13 Immediacy is in 

the eye o f the beholder, but the emphasis o f the proof is still clear: for each context 

sensitive grammar construct an equivalent grammar in which we can apply productions 

without exceeding the length o f the derived sentence. Kuroda's emphasis stands in 

contrast to contemporary proofs of the same theorem where the emphasis is on the

12 As expected, Kuroda says that input is accepted nondeterministically when there is a 
single accepting computation. Curiously, however, he says the same thing about 
rejecting: "a string is said to be rejected by M  if there is a computation o f M  which, given 
the string as input, never ends, or ends up off the left end of the tape, or, finally, ends up 
off the right end of the tape in a nonfinal state" (Kuroda 1964, p. 209 emphasis added). 
This differs from the usual convention o f accepting when there is a single accepting 
computation and rejecting only when all possible computations reject.

13 As before, we might be tempted to distinguish between LBA's as acceptors and 
LBA's as transducers, but I don't think it makes any difference here. There is no essential 
difference between an automaton that accepts nondeterministically and one that 
enumerates sentences nondeterministically. It is simply a matter o f  how we choose to 
decorate one and the same computation tree (e.g., w  as input at the root vs. w as output at
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nondeterminacy of the computation; we imagine a machine presented with an input, w, 

nondeterministically choosing productions and tape positions in an attempt to derive 

S=>vv. Since the productions are all non-contracting (recall that a grammar is context- 

sensitive if  for each of its productions cp—»\)/, \{/ is at least as long as tp), we will never 

have an intermediate x, S=>.r=»v, where the length of .r outstrips the input length, and 

hence the machine will accept vv iff S=»v.

Kuroda needs both non-expanding derivations and nondeterministic automata to 

establish the equivalence between context-sensitive grammars and linear-bounded 

automata. It is strange that Kuroda's proof would emphasize the former while saying very 

little about the latter. Apparently it was enough to display length-preserving, linear- 

bounded grammars; the nondeterministic operation o f the machine could be left to the 

reader. But such a presumption is especially odd considering that Kuroda's paper is 

considered somewhat o f a landmark work on nondeterministic computation. If 

theoreticians had to learn to think nondeterministically, it is not clear to me that Kuroda's 

proof would have shown them how. In any case, the Chomsky hierarchy was complete 

and by 1965 nondeterminism had become a central feature o f  theoretical computer 

science.

4 .1 9 6 5 -1 9 7 2

There is a disconnection between the received view o f  Kuroda's work and the 

work itself. Similar disconnections are evident in the period from 1965 to 1972. We 

begin with the work o f Hartmanis and Steams (1965), which initiated the theory of

a leaf).
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computational complexity. The basic idea is straightforward: use the time it takes a 

Turing machine to compute a function as a measure o f that function's intrinsic 

computational difficulty. At first blush, there is sense o f continuity here; Hartmanis and 

Steams present their theory as a natural extension o f Turing's 1936 work, even going so 

far as to talk about computable sequences rather than functions. Like Yamada, and Rabin 

and Scott, Hartmanis and Steams recognized the need to move away from the 

unrestricted Turing machine in order to model working digital computers. 14 They also 

suggest that their work complements Myhill's discussion o f a linear-bounded automaton 

as a space-bounded measure o f  computational complexity. And finally, there is a 

recursion-theoretic feel to many o f the results they present (e.g., the set o f  all computable 

sequences is recursively enumerable, for any set o f sequences time-bounded by a given 

function a diagonal procedure can be used to find a sequence not computable in that 

time-bound, the set o f all complexity classes is countable and hierarchical, etc.). In this 

light, the 1965 work of Hartmanis and Steams fits in nicely with the work that came

14 Unlike Rabin and Scott, Hartmanis and Steams considered the Turing machine a 
perfectly appropriate model o f computation:

This particular abstract model o f a computing device is chosen because much of 
the work in this area is stimulated by the rapidly growing importance of 
computation through the use o f digital computers, and all digital computers in a 
slightly idealized form belong to the class o f multitape Turing machines 
(Hartmanis and Steams 1965, p. 285).

Although he reports being strongly influenced by automata theory, Hartmanis 
recalls that when he and Steams started working on a theory o f computational 
complexity, "we realized that finite automata did not provide us with a sufficiently rich 
model o f  computing to develop the quantitative theories that we believed were needed 
and could be created" (Hartmanis 1981, p.45).
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before it. There is, however, an important difference. Hartmanis and Steams are 

explicitly and exclusively concerned with deterministic computation.

In hindsight, it is remarkable that the seminal paper in complexity theory—a 

theory now dominated by questions about nondeterminism—does not mention the 

nondeterministic Turing machine. Hartmanis recalls that by 1962, when he and Steams 

began a serious investigation of computational complexity, they had been "seriously 

exposed" to aspects o f formal language theory and were well familiar with automata 

theory (Hartmanis 1981, pp. 45-46). In particular, Hartmanis had read Chomsky (1962) 

and Rabin (1959). Nondeterministic automata figure prominently in both papers. 

Hartmanis also recalls that he and Steams had been able to do their work outside the 

traditional framework; they were "surprisingly ignorant" of the traditional theory o f 

effective computability, and, unlike many of their peers, they were not driven to find "the 

automaton that would model real computing" (Hartmanis 1981, p. 47 emphasis in the 

original). It would seem that Hartmanis and Steams were not only sufficiently acquainted 

with the idea o f a nondeterministic automaton, they were free o f the recursion-theoretic 

scruples that might have caused them to avoid nondeterminism. They approached 

computational complexity as mathematicians interested in the most general theory, so 

they were not limited just to realistic generalizations (even if, following Yamada, they 

had placed a premium on developing a theory o f actual digital computers), but at the 

same time they could remain blissfully ignorant o f the recursion theorist's exclusive focus 

on deterministic computation. And yet there is no mention of a nondeterministic Turing 

machine— not as a possible generalization o f computation (a subject they consider at
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length), nor as a source o f open questions for further study.

We can only speculate about the non-appearance o f the nondeterministic Turing 

machine in 1965. In the introduction, Hartmanis and Steams describe the paper's third 

section,

One section is devoted to an investigation as to how a change in the abstract 
machine model might affect the complexity classes. Some of these classes are 
related by a "square law," including the one-tape-multitape relationship: that is if 
a  is T-computable by a multitape Turing machine, then it is T^-computable by a 
single tape Turing machine. It is gratifying, however, that some o f  the more 
obvious variations do not change the classes (Hartmanis and Steams 1965, 
emphasis added).

Although it seems that the generalization to a nondeterministic machine would have been 

obvious, the question as to how it might affect complexity classes would have been (and 

is still) far from obvious. Perhaps Hartmanis and Steams anticipated the difficulty o f this 

question and decided to omit the nondeterministic Turing machine from their work and 

spare themselves the headache. It seems more likely, however, that Hartmanis and 

Steams were more than happy to settle on a single abstract model o f real computing. The 

generalization to nondeterministic Turing machines has little real-world currency. On the 

other hand, the generalizations Hartmanis and Steams do consider in the third section o f 

their 1965 paper all concern tape arrangements (e.g., multiple tapes and two-dimensional 

tapes) that correspond to obvious variations in the architecture of real computers and 

their memory. The fact that these variations do not affect complexity classes supports 

Hartmanis and Steams' claim that "all digital computers in a  slightly idealized form 

belong to the class o f multitape Turing machines" and vindicates the choice o f the
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deterministic Turing machine as an abstract model o f time-bounded complexity.15

Quite apart from such speculation, it is strange that Hartmanis and Steams did not 

consider nondeterministic machines—here we have another instance where the 

discussion o f nondeterminism we might expect, prima facia , never materializes. 

Nondeterminism is one o f the defining features of today's complexity theory and yet the 

nondeterministic Turing machine is conspicuously absent from Hartmanis and Steams' 

seminal work. Looking at the example the other way around we find that the emphasis at 

the outset was to develop a theory o f complexity that would apply to real-world 

computation; but now, with complexity theory dominated by questions about 

nondeterminism, the concern for realistic computation is all but lost. The fact that the 

theoretical emphasis has shifted so dramatically reinforces the doubts we expressed in the 

last chapter about reconciling nondeterminism and realistic computation.

Next we turn to Cook's 1971 work and find, once again, an odd mix of 

continuities and discontinuities. The paper is famous for establishing Cook's theorem—a 

constructive proof o f the existence of an NP-complete problem. The sense of complete 

comes from recursion theory (and not logic) and it is important to the complexity 

theorists because

15 It is interesting that Hartmanis later collaborated with Hopcroft to write "An 
Overview o f the Theory o f Computational Complexity" (Hartmanis and Hopcroft 1971) 
in which the emphasis on the real-world application is reiterated more strongly than it 
was in 1965 despite the intervening work on nondeterministic computation:
"Furthermore, this theory [i.e., computational complexity] must eventually reflect some 
aspects o f real computing to justify its existence by contributing to the general 
development o f computer science" (Hartmanis and Hopcroft 1971, p. 444, emphasis 
added).
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We feel we have completely understood and categorized the complexity of a 
problem only if the problem is known to be complete for its complexity 
class...They [complete problems] are the link that keeps complexity classes alive 
and anchored in computational practice (Papadimitriou 1994, p. 166).

Intuitively, a complete problem is at least as hard to solve as any other problem in

the class and is thus thought to capture—or characterize—the difficulty o f all the

problems in the class. We establish completeness by way o f reduction (another notion

from recursion theory). Informally, one problem reduces to another when instances o f the

first problem can be transformed into instances o f the second. A problem is complete for

a given class when any problem in the class can be reduced to it. In Cook's case the target

problem is deciding the set of propositional tautologies in disjunctive normal form. The

basic idea is that we are given some language that is decided by a nondeterministic

Turing machine in polynomial time, and we construct a formula o f propositional logic, in

conjunctive normal form, which will be satisfiable if and only if the machine accepts a

given input within the given polynomial-time bound.16 If the machine does not accept

the input, the constructed formula will be unsatisfiable, and hence the denial o f  the

formula (which can be rendered in disjunctive normal form using De Morgan's laws in

16 There are two technical points to make here. First, as we saw in Chapter 2, 
constructing the propositional formula is straightforward (all the more so, since the 
polynomial bound allows us to use disjunctions and conjunctions in place o f existential 
or universal quantification): it is a conjunction o f several disjunctive subformulas 
asserting, e.g., that a particular input string appears on the input tape, that at each time- 
step the tape head scans exactly one cell, that each cell contains exactly one symbol, that 
at each time-step the machine is in exactly one internal state, that tape updates occur 
according to the machine's transition table, etc. Second, for any machine and any input 
the corresponding formula can constructed in polynomial time. The second point is 
important because if we allow inefficient reductions, the sense of completeness becomes 
trivial. That is, very hard problems can be reduced to very easy problems if we allow
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linear time) will be tautological. Thus, if we can decide propositional tautologies we can 

solve any problem that is decided by a nondeterministic Turing machine in polynomial 

time.

Cook's proof bears an obvious resemblance to Turing's proof for the insolubility 

o f  the Entscheidungsproblem\ in both cases we have a reduction from the operation o f a 

Turing machine to logic. Also, Cook's motivations to explore the scope and limits o f 

mechanical-theorem proving are reminiscent o f the questions that motivated Turing's 

original work. Finally, Cook puts a recursion-theoretic spin on his results. In this sense, 

Cook's 1971 work can be seen as continuing earlier work. By contrast, continuity after 

Cook, although often taken for granted, is not so clear.

It is not surprising that Cook is celebrated for initiating the study o f NP- 

completeness and for formulating the P=NP question. When we look back at his 1971 

work it is hard not to see modem theory inchoate in the results and proof techniques 

which are now so methodologically central to complexity theory. Trakhtenbrot (among 

others) reinforces this view when he points out that the significance of Cook's work was 

not fully appreciated until Karp (1972) demonstrated by way o f example the wide extent 

o f natural combinatorial problems that are NP-complete (Trakhtenbrot 1984, p. 396). 

This observation, together with the fact that Karp himself credits Cook's work as an 

inspiration, leads to the widely accepted view that the work started by Cook found its 

fullest expression in Karp. But hindsight can be misleading and in this case it leads to an 

anachronistic view of theory.

sufficiently complex reductions.
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The fact that it was Karp's later work that popularized Cook's is far from an

unprecedented situation in the history o f science, but it is noteworthy here because it

reminds us that Cook's work was re-introduced into a context that was slightly different

from the one in which it was originally written. While it is tempting to assume that Karp

(1972) simply extended Cook's work, the real story is slightly different. In fact, there are

theoretical discrepancies between Cook and Karp (and for that matter, between Cook's

1971 work and the contemporary approach to NP-completeness). First, Cook and Karp

rely on different senses of reduction. Cook defines reduction in terms of deterministic

query machines (a.k.a. oracle machines):

A query m achine is a multi-tape Turing machine with a distinguished tape called 
the query tape, and three distinguished states called the query state, yes state, and 
no state respectively. If M is a query machine and T is a set of strings, then a 1= 
com putation of M is a computation of M in which initially M is in the initial state 
and has an input string w on its input tape, and each time M assumes the query 
state there is a string u on the query tape, and the next state M assumes is the yes 
state if  ueT  and the no state if  ugT ...

A set S of strings is P-reHucihle (P for polynomial) to a set T of strings iff there is 
some query machine M and a polynomial Q(n) such that for each input string w, 
the T-computation o f M with input w halts within Q(|w|) steps (|w| is the length of 
w), and ends in an accepting state iff w gS (Cook 1971, p. 151).

Karp, on the other hand, says nothing about oracle computation in his definition of 

reduction.

Let n  be the class o f functions from I*  to I*  computable in polynomial time by 
one-tape Turing machines. Let L and M be languages. We say that L is redncihle 
1q M if there is a function f e l l  such that f(x)eM  o  x eL  (Karp 1972, p.86).

So-called Cook-reduction is considered to be a weaker, more general notion than Karp-
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reduction; however, Karp-reduction is more often used and is the de facto  sense of 

reduction traditionally associated with the study of NP-completeness. Second, Karp's 

presentation o f Cook’s theorem has SATISFIABILITY as the target problem in the 

reduction and not that o f deciding DNF tautologies. While SATISFIABILITY is the 

canonical example o f a problem in NP, deciding tautologies is a typical example of 

problems in coNP. In fact, given that the problem o f  deciding tautologies is coNP- 

complete, which, together with the current thinking that NP^coNP, suggests that Cook's 

example of an NP-complete problem is not really in NP (recall note 3 from the previous 

chapter).17 Finally, it is somewhat misleading to attribute the explicit formulation of the

17 On one hand, it is hardly surprising that Cook used DNF tautologies as his target 
problem; his interests were in theorem-proving, where validity is a far more important 
property than satisfiability. On the other hand, however, it is remarkable that the main 
result in Cook’s 1971 paper is so often misremembered as an example of an NP-complete 
problem. This situation can be explained by pointing out again that Cook's work was not 
really appreciated until 1972, when Karp directed attention toward complete problems. 
Thus Cook's original emphasis on theorem-proving and his reduction to DNF tautologies 
seem to have been overlooked (cf. Miller 1972). Unfortunately, we won't find much 
philosophical comfort in this explanation. Quite to the contrary, it is strange that Karp's 
work should be seen as an extension of Cook's when Karp lays the foundation for 
distinguishing the two approaches. Cook's target problem is decided by an oracle 
machine. Consequently, it makes no difference whether we consider the problem itself or 
the complement problem. For example, Cook notes that, like other problems, the problem 
o f deciding whether a number is prime can be reduced to the problem of deciding DNF 
tautologies because it "or its complement, is accepted by a nondeterministic Turing 
machine" (Cook 1971, p. 152 emphasis added). Although it turns out that a 
nondeterministic machine can decide whether a number is prime (in fact, the problem of 
deciding primality is in both NP and coNP), that result wasn't established until 1975, 
which suggests that Cook must have been thinking about the complementary problem of 
deciding whether a number is composite when he added primality to his list o f P- 
reducible problems—a problem that is easily decided by a nondeterministic polynomial
time algorithm (guess and verify factors). By contrast, Karp relies on nondeterministic 
machines to decide the target problem and in this context it is widely believed that there 
is a difference between deciding a problem or its complement. And exactly this
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P=NP question to Cook (cf. Greibach 1981; Sipser 1992; Trakhtenbrot 1984). Although 

Cook does suggest that it is "fruitless" to search for certain polynomial time decision 

procedures, there is no mention o f  NP perse  and he is remarkably sanguine when it 

comes to the prospects o f proving that DNF tautologies cannot be decided in polynomial

time: "I feel it is worth spending considerable effort trying to prove this conjecture" 

(Cook 1971, p. 154).18 While the P^NP conjecture is certainly implicit in Cook's 1971 

work, the main thrust of that paper is toward establishing various complexity measures 

and in this sense formulating the larger question whether P=NP almost seems incidental. 

Karp, on the other hand, speaks explicitly in terms of P and NP and his extensive list of 

"classic" problems that turn out to be NP-complete makes it obvious that the P=NP 

question is more than incidental. In addition, at the time his work was presented, Karp 

reported a preoccupation with the question of equivalence between polynomial-time 

deterministic and nondeterministic Turing machines (Miller 1972, p. 177). The P=NP 

question as we know it is far more evident in Karp's 1972 work than it is in Cook's 1971 

work.

While it might seem that we are splitting theoretical hairs, there is an important 

philosophical point to be made here. Cook (1971) and Karp (1972) differ in their sense of 

reduction, their statement o f  Cook's theorem and in overall emphasis, and yet the two 

papers are regarded as continuous efforts. Indeed, one can hardly read about Cook’s 1971

difference divides Cook and Karp.
18 Although Cook does note, despairingly, that the kind o f diagonlization which 

establishes the halting problem (a complete problem in it own right) as non-recursive 
does not seem to carry over to a proof that DNF tautologies cannot be decided in poly-
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paper without also reading about Karp’s 1972 paper. How does this happen? How does a 

theoretical tradition that is driven by a variety o f subtle distinctions seemingly overlook 

these more obvious discrepancies at its foundations? We might answer that not all 

differences are irreconcilable and in' this case the differences we have noted are not 

differences in kind. From a theoretical point of view this is a perfectly reasonable answer. 

But from a more philosophical perspective we find that the theoretical answer flies only 

because there is flexibility in the conceptual underpinnings o f nondeterminism—so much 

flexibility that our intuitions about nondeterminism are collapsed to suit the theory.

The difference between Cook-reductions and Karp-reductions is a case in point. 

There was never any theoretical question about the distinction between the two notions; 

recursion theorists had studied analogous reducibilities long before 1972, Karp himself 

acknowledged Cook-reduction as a weaker notion, and by 1975 the differences among 

resource-bound reductions were well established.19 At the same time, the distinction 

between Cook-reductions and Karp-reductions also relates the two notions. Cook- 

reductions are described as those in which a polynomial number o f calls to an oracle are 

allowed while Karp-reductions are described as those in which exactly one call to the 

oracle is allowed. Oddly enough, however, Karp never mentions oracles in his formal 

definition o f reduction. Instead, he defines nondeterministic algorithms in very general 

terms and discusses how one might think about a nondeterministic machine "guessing" or 

pursuing parallel computation paths (Karp 1972, pp. 91-92). Moreover, Karp notes:

time (Cook l971,p.I55).
19 See, e.g. (Ladner, Lynch, and Selman 1975).
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The reader will not go wrong by identifying P with the class o f languages 
recognizable by digital computers (with unbounded backup storage) which 
operate in polynomial time and / Jwith the class o f  string mappings performed in 
polynomial time by such computers (ICarp 1972, p.88, emphasis added).

Contrast that view with Cook's informal discussion of reduction, where he

describes an oracle that "knows" the target problem and can decide membership

questions "instantly." On an intuitive level, it is far from obvious that the

nondeterministic machine at the end of a Karp-reduction is doing the same thing as the

oracle machine in a Cook-reduction—and yet, theoretically, Cook-reductions generalize

Karp-reductions.

The theoretical reconciliation between Cook-reductions and Karp-reductions 

demands that we think about nondeterministic machines as oracle machines. Not only 

does this blur the intuitive contrast between Cook (1971) and Karp (1972), but it also 

obscures an important historical difference between oracle and nondeterministic 

computation. As mentioned in the last chapter, the introduction of the oracle machine is 

due to Turing. There is no question about the when or why for oracle computation. In a 

1939 paper Turing explicitly defines oracle machines and then uses them to prove that 

there would still be unsolvable problems even if certain problems could be solved by 

some "unspecified means" (Turing 1965b). According to Feferman (1988), Turing's idea 

was "striking" and even if Turing himself did nothing else with oracle machines, the idea 

resurfaced in Post's work in the '40s, with due credit to Turing, and would eventually 

"change the face o f recursion theory." While the nondeterministic Turing machine has 

had a comparable impact on complexity theory, we have seen that its pedigree is far less
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certain.

For such a ground breaking paper, Cook (1971) is remarkably conservative; its 

motivation and proof-techniques recall Turing’s original efforts, while the notion of an 

oracle machine has its roots in a well-defined theoretical tradition. Karp (1972), on the 

other hand, sets the stage for the contemporary discussion of NP-completeness. In this 

sense the two papers are discontinuous; Cook's paper is something o f a throwback while 

Karp's anticipates future work. Even if one were to deny that the transition from Cook to 

Karp is so sharply kinked, it should still be clear that a presumption of continuity is 

unfounded. At the very least, we have noted a peculiar theoretical ellipsis (cf. note 19) 

and what seems to be the conflation o f oracle and nondeterministic computation. Once 

again, we see that the received view of nondeterminism is in need o f both historical and 

philosophical work.

5. Conclusions

It should be clear by now that if we are hoping for philosophical understanding, 

the events from 1936 to 1972 reveal little continuity in the conceptual development of 

nondeterminism. First, there was Turing's discussion o f choice machines. Although it 

seems to have been overlooked, Turing's is clearly the first formal discussion of 

nondeterminism. Moreover, Turing's motivation for proving the equivalence between 

(unbounded) deterministic and nondeterministic machines anticipates contemporary 

appeals to the equivalence as evidence for the Church Turing thesis. Next, there was 

Rabin and Scott's nondeterministic finite automaton. Unlike Turing, Rabin and Scott's 

motivation was far more pragmatic than philosophical; for them the (re)introduction o f
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nondeterminism was a conservative expedient on the way toward a more realistic theory 

o f working computers. Then there was Kuroda's work, which began with a problem from 

formal language theory and produced a result that is now celebrated for bringing together 

a broad community of theoretical computer scientists and teaching them how to think 

nondeterministically. But as we saw, Kuroda is surprisingly diffident when it comes to 

explaining how his nondeterministic linear-bounded automata works. Finally, there is the 

work o f Cook and Karp, which is celebrated for giving us our first true insight into the 

class o f problems solvable by polynomial-time bounded nondeterministic Turing 

machines. Unfortunately, this insight blinds us to theoretical and historical tensions.

From a technical point o f view, the idea of a nondeterministic automaton remains 

constant across these four episodes— we simply allow transition relations rather than 

transition functions— but from a conceptual point of view, we find the same technical 

device being applied in very different contexts. No single motivation unifies these 

various discussions o f nondeterminism.
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V. Computer Science and the Philosophy of Science

1. Looking Back and Looking Forward

It is time, finally, to take stock of our efforts. We began with general questions 

about the Turing machine. Given its central place in theory, doubts about the Turing 

machine cut straight to the core o f theoretical computer science. But rather than initiate a 

complete conceptual overhaul, vve opted to take the theory on its own terms in an attempt 

to make sense of nondeterministic algorithms. After examining some of the more 

mundane results from complexity theory we found that nondeterministic algorithms lack 

many of the qualities we intuitively associate with algorithms and we argued that the 

prospects for a philosophical reconciliation between ideas about resource bounds, 

nondeterminism and the informal notion o f algorithm seem rather grim. Next, vve tried to 

fit these ideas into a tidy historical context; but despite our best efforts, the history o f 

nondeterminism is still a mess. Although we have pinned down a definite date for the 

introduction o f the nondeterministic Turing machine, it is hard to find much continuity in 

the landmark papers that followed. In fact, apart from a few anecdotal remarks, very little 

has been said about how theoreticians thought about nondeterminism. The history o f 

nondeterminism is characterized by disparate motivations and theoretical ellipses. Even 

worse, it is not clear that even this early in the history o f theoretical computer science we 

will be able to fill in the gaps.1

1 Cf. Davis (1988a) where he despairs at the prospect o f a robust intellectual history of 
theoretical computer science. His example o f the inherent difficulties o f such a history
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On one hand, these results are disappointing. We have done all this work merely 

to conclude that the received view o f complexity theory is in need of both historical and 

conceptual work—hardly a constructive conclusion. On the other hand, however, we 

have uncovered a deep tension at the heart o f theoretical computer science. This by itself 

is progress. But more important, in coming to grips with this tension we become better 

philosophers. Questions about theoretical computer science force us to clean up loose 

rhetoric and might even shed new light on traditional positions in the philosophy of 

science.

First, let us reiterate, explicitly, the lurking philosophical tension: given that 

history fails to reveal a univocal motivation for nondeterminism, we must face the 

possibility that the notion has been put to mutually exclusive theoretical ends. In some 

cases nondeterminism is marshalled as evidence in support o f the Church Turing thesis, 

while in other cases it strongly suggests that our formal notion o f an algorithm might be 

incomplete. For example, we noted at the beginning o f  Chapter 3 that Rogers takes it as 

philosophically obvious that the informal notion o f an algorithm is deterministic insofar 

as it entails ideas about mechanism and discrete step-wise operation. But he also goes on 

to argue that the informal notion of an algorithm need not be constrained by any bound 

on how long the computation takes. Although Rogers himself does not consider the 

possibility, it is clear in this context how the equivalence between unbounded 

deterministic and nondeterministic Turing machines might further buttress what Rogers 

calls the Basic Result— the fact that a wide variety o f formal characterizations o f

reflect many of the problems we have encountered.
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computable pick out the same class o f functions. It makes no difference whether our 

formal notion o f algorithm is deterministic or nondeterministic; exactly the same class of 

functions ends up being computable. The equivalence gives us more reason to believe 

that we have found in the Turing machine an adequate formal analogue for our informal 

intuitions about algorithms. At the same time, however, Rogers concedes that there is 

room to debate whether the informal notion o f an algorithm entails a constraint on the 

time o f computation. The nod to the theory of complexity is obvious, but there is far 

more at stake here than a simple acknowledgement. As soon as we impose resource 

bounds, the equivalence between deterministic and nondeterministic Turing machines 

goes up for grabs. Indeed, the fact that there is wide-spread belief that P^NP, together 

with the idiosyncratic features we noted in Chapter 3, suggests that nondeterministic 

algorithms are fundamentally different from deterministic ones. Either we can ignore 

resource bounds and celebrate the equivalence between deterministic and 

nondeterministic Turing machines as evidence for the Church Turing thesis, or we can 

impose resource bounds and forget about the equivalence. As we said from the outset, we 

cannot have it both ways.

Returning to the questions we raised in Chapter 4, the idea o f a nondeterministic 

Turing machine might split the classical sense o f algorithm into incomparable notions. 

Such a split would make it easier to account for the fact that in one context we have an 

assumption that is theoretically conservative, while in another context the same 

assumption leads to a variety o f (putative) distinctions. It might also allow us to explain 

away the counter-intuitive features o f nondeterministic algorithms— for it is hardly
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surprising that a fundamentally different sense o f algorithm would rest on intuitions far 

removed from those that underwrite the classical sense o f algorithm. Still, if there are 

really incomparable senses o f algorithm here, we must radically readjust our view of the 

ongoing work in complexity theory. Theoretical computer science presupposes a robust 

notion o f algorithm as its object of study, and it is natural to assume that ongoing work 

re flects a deeper understanding of that notion. But if  complexity theory rests on a sense 

o f algorithm that undermines or, perhaps, even supplants the classical sense, then we 

must question how the contemporary theory relates to the work that came before it. In 

this light, we might come to regard the persistent mention of Turing machines and the 

oft-cited analogies to recursion theory as historical curiosities in the development of 

complexity theory, but it would be hard to justify conceptual ties to much of the previous 

work if it turns on a fundamentally different sense o f algorithm. It is one thing to refine 

theoretical foundations but quite another to replace those foundations altogether.

In the end, these questions about determinacy and resource bounds betray deeper 

questions about what it is to be algorithmic. Although Church, Turing and Kleene 

(among others) have been celebrated for providing a definitive answer to that question, 

they only opened the subject; they did not close it. We have explored just one avenue of 

investigation and discovered that nondeterminism has motivated a variety o f haphazard 

theoretical developments and might ultimately reflect a splintering sense o f algorithm. At 

the very least, it should be clear that the complexity theory of today is dealing with a 

sense o f  algorithm far removed from that put forward in the '30s.

Even if we cannot immediately make sense o f these developments, it is important
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that we take notice o f them nonetheless. For one reason, the language of computation is 

now entering into philosophical debate. Unfortunately, the usage tends to be uncritical 

and consequently a good number o f philosophical debates generate heat and smoke but 

very little light. For example, consider Searle’s (1990) discussion o f "multiple 

realizability." Computers are said to be multiply realizable in the sense that they are 

characterized by the manner of their construction and not the materials; if  it is built in the 

right way a machine constructed from water pipes and plumbing valves will be just as 

much a computer as a machine built from MSI chips and printed circuit boards. From this 

view a machine need only display the right kind of functional relationship between 

"input" and "output" to be a computer. Although multiple realizability reflects a 

remarkable separation of form and function, Searle worries if such a view commits us to 

a view that any physical object is a computer at some level of description; he even goes 

so far as to suggest that, "the wail behind my back is right now implementing the 

Wordstar program, because there is some pattern of molecule movements which is 

isomorphic with the formal structure o f Wordstar" (Searle 1990, p. 27).

Searle raises an interesting question: if computation cannot be characterized by 

the stuff o f which computers are made, what makes something computational? Moreover, 

if we cannot say what it is to be computational, what sense is there in asserting a 

computational theory of mind? One response comes from Copeland, who claims "To 

compute is to execute an algorithm" (1996, p. 335). The idea is straightforward: we call 

something a computer when we can specify (in advance) a relation between an 

underlying architecture (whatever the physical implementation might be) and a step-by-
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step flow of control. Presumably, we cannot even begin to describe how the movement of 

molecules relates to what Searle glibly identifies as "the formal structure o f Wordstar" 

and so we do not regard the wall behind his back as a computer.

While this exchange between Searle and Copeland is engaging, it also strikes me 

as ill-framed. To be fair to both Searle and Copeland, we have caricatured a debate about 

the computational theory of mind, which is set in a much wider context in the philosophy 

o f mind. At the same time, however, the philosophy o f mind is one place where the 

unbounded sense o f algorithm is clearly inappropriate. Indeed, if there is philosophical 

agreement about anything in that context it is that brains are finite. So, if mind is the 

brain's execution of an algorithm, then the sense of algorithm had better be both resource- 

bounded and tractable (in some sense). Moreover, the possibility that modem complexity 

theory might reveal a splintered sense of algorithm should weigh heavily on this debate. 

The homely sense of algorithm we associate with Turing's work—intuitions both Searle 

and Copeland exploit— might be too coarse a notion or, perhaps, the wrong notion 

altogether for a discussion of algorithms o f such manifest complexity. This is not to 

suugest that complexity theory will settle the debate between Searle and Copeland, but 

rather to point out that before we can even engage the debate we had better look at 

complexity theory and decide whether we have framed the debate in the appropriate 

terms.

Obviously, a philosophical appeal to theoretical notions should be informed and 

critical, but there is also another reason that philosophers, and philosophers o f science in 

particular, should pay attention to the recent developments in complexity theory.
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Consider what Hartmanis has to say about theoretical computer science as science:

I see computer science as a brand new species among other sciences, and I 
believe it differs fundamentally from the older sciences. As a matter o f fact, I am 
convinced that in large parts o f computer science the classic research paradigms 
from the physical sciences or mathematics do not apply and that we have to 
develop and understand the new paradigms for computer science research. The 
fundamental difference between, say, physics and computer science is that in 
physics we study to a very large extent a world that exists, and our main objective 
is to observe and explain the existing (and predict new observable) phenomena. 
The relations between experiments and theory are quite well understood and 
richly illustrated by successful examples. Computer science, on the other hand, is 
primarily interested in what can exist and how to describe and analyze the 
possible in information processing. It is a science that has to conceptualize and 
create the intellectual tools and theories to help us imagine, analyze, and build the 
feasibly possible (Hartmanis 1981, p.43).

Are we really witnessing the birth o f a new science? There are several reasons to think

we are. For instance, Hartmanis goes on to say that understanding the relation between

theory and practice will be important for making sense o f computer science as a new

science. The role o f nondeterminism is certainly one example where the traditional views

of theory and practice break down. Here we have a notion that, from a practical point of

view, is virtually inscrutable. As we have said before, nondeterminism is something o f an

anathema to digital design; real computers do not guess what to do next. And yet

nondeterminism is a central feature o f theoretical computer science. Contrast the state o f

affairs we just described with the situation in the "other sciences;" although theorists and

experimentalists are engaged in different activities, the objects o f study presumably

remain constant. One might say that the study of computation unites the theorist and the

engineer, but at best, this connection is degenerate insofar as theory mostly provides

hardware engineers with examples o f what they cannot hope to do, and at worst it seems
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that theory and practice could disconnect altogether. Consider again Pitowski's 

suggestion that there might be NP-complete problems with physical polynomial time 

solutions even if it happens theoretically that P^NP. If it is possible to exploit physical 

analogues to provide tractable solutions to theoretically "hard" problems, will such 

solutions be computational? For better or worse, the theoretical sense o f the word is 

rooted in the plodding, discrete behavior o f a Turing machine, and it is far from clear that 

the same intuitions (much less the theoretical results) would apply to an analog 

"computer." The possibility o f what can exist in this case forces the philosopher o f 

science to rethink the relation between theory and practice. It is hard enough to see the 

theoretical payoff even when we presume a constant sense o f computational.2 1 am not 

sure how we would explain the situation if theory and practice ultimately revolved 

around fundamentally different conceptual foundations.

It is hard to sort out the relation between theory and practice because it is hard to

1 A sociologist would have field day studying the advent o f computer science as an 
academic profession. The struggle for disciplinary identity was hard fought and the 
division between those who view computer science as applied mathematics and those 
who view it as electrical engineering exists to this day. So, it comes as no surprise when 
those in opposing camps cast a skeptical eye on each other's work. But it is surprising 
when the theorist expresses doubts about the value o f his own work. We have already 
mentioned Hartmanis' worry that too much of the theory is hidden "behind obscure 
mathematical formalizations" and that "[t]ime and again, we have valued the difficulty o f 
proofs over the insights the proved results give us about computing; we have been 
hypnotized by mathematical elegance and pursued abstraction for its own sake" 
(Hartmanis 1981, pp. 49-50). Even more telling is the fact that such worries have plagued 
the theory from the beginning. At the 1972 conference on the Complexity o f Computer 
Computations, a distinguished panel o f theorists (Karp, Rabin, Hopcroft, to name a few 
in attendance) was asked, point blank, to discuss "[w]hat specific examples have been 
found to demonstrate how real computers computations were improved from studies of 
this type" (Miller 1972, p. 170). It is striking that such a question would come up at all,
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sort out the theory itself. Here again, the role o f nondeterminism forces us to rethink 

traditional views. Hartmanis suggests there are no natural kinds for the computer 

scientists to study. There is no independently existing species algorithm against which 

we can compare our theoretical results. There are only intuitions and the formal 

analogues we introduce. We have mentioned the sort o f evidence given to support the 

claim that the unbounded Turing machine captures all our intuitions about algorithms. 

That evidence trades on a combination of unexpected convergence and intuitive appeal— 

it is the kind of theoretical evidence easily recognized by the philosopher o f science. But 

we have also argued contrary to the received view that ideas about resource bounds and 

nondeterminism do not fit very easily into this body of evidence. In fact, we have seen 

that the idea of a resource-bounded nondeterministic algorithm actually contradicts many 

o f our intuitions about algorithms. So, if it is not evidence (at least not in any usual sense 

o f the word), what exactly is the theoretical status of nondeterminism? It is tempting to 

characterize nondeterminism as an unrealistic but useful model o f computation. Such a 

view resonates with the notion o f idealization—another notion familiar to the philosopher 

o f science. But if  nondeterminism is an idealization, it is a peculiar kind. In general, 

idealizations allow us to impose a simpler, albeit unrealistic structure on the flux of 

phenomena we observe. An idealization is useful insofar as it makes matters more 

perspicuous. It is odd to think that we might do the same to the "conceptualizations" and 

"intellectual tools" o f our own construction. Can we idealize our own ideas?

Some will argue that we have simply misconstrued complexity theory. Perhaps it

much less at a conference devoted to theory.
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is better understood as theory concerned with "the intricate and exquisite interplay 

between computation (complexity classes) and applications (that is, problems)" 

(Papadimitriou 1994, p. v). The problems themselves—as opposed to the algorithmic 

solution to those problems—become the objects o f study. Nondeterminism is neither 

evidence nor idealization; rather, it is a useful abstraction, a generalization that leads to a 

rich classification of problems. The emphasis here is decidedly mathematical and it 

avoids what otherwise seems like a procrustean fit between complexity theory and our 

traditional views o f scientific theory. At the same time, however, it is hard to understand 

nondeterminism even as part o f an ongoing mathematical investigation. In many ways, 

the mathematical development o f complexity theory reminds me of the development of 

set theory near the turn of the century. Once again, we find that a seemingly innocuous 

generalization can take a theory originally motivated by familiar and robust intuitions 

and turn it on its head. Although nondeterminism does not lead to outright paradox, it 

does lead to a number of notoriously open questions. Just as the intuitionist worried about 

the path to Cantor's paradise, we do well to ask about the assumption that got us here.

There are hints of a Platonic attitude toward nondeterminism. Time and again 

theorists speak of the "nature of nondeterministic computation" and our "limited 

understanding of it." While such an attitude might be understandable in the face o f so 

many open problems, it is still odd that it would find expression in a discipline so firmly 

rooted in the constructivist tradition o f finite combinatorial mathematics. There are also 

more pragmatic attitudes toward nondeterminism. Realistic or not, it induces a rich 

theoretical structure and allows us to draw analogies to the more established branches of
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mathematics (e.g., recursion theory, model theory etc). Such an attitude is reminiscent o f 

Russell's defense o f  the "logical" axioms of Principia Mathematica; it is a sort of wait- 

and-see approach. (Take the axiom now and decide later if you like where you end up 

theoretically.) Unfortunately, even the most productive theorist must admit that a good 

part o f his work is tentative. At present it is very hard to judge the theoretical utility of 

nondeterminism. In fact, as we suggested in Chapter 3, the assumption has led to a sort o f 

theoretical regress, as researchers introduce ever more remote notions to prove that 

P?iNP, while some have even begun to pursue independence proofs that neither the 

conjecture nor its negation is provable— not exactly the kinds o f results one would like to 

see when judging the theoretical utility o f nondeterministic Turing machines. On the 

other hand, it is hard to ignore the feeling that we actually have discovered something 

robust and natural when we point to the unbounded equivalence between deterministic 

and nondeterministic machines as evidence for the Church Turing thesis, and we cannot 

deny that nondeterminism leads to an interesting, albeit tentative, theory. It is thus 

difficult to categorize the study o f nondeterminism along the lines philosophers have 

traditionally imposed upon mathematical investigation; it is not entirely Platonic, nor 

formal, nor constructive. But it is an investigation o f something, and when we understand 

what that something is we will, I think, have a finer-grained philosophy o f  mathematics.

It is fitting that we should conclude with a nod toward the philosophy o f 

mathematics. Sorting out the conceptual tensions here is really a problem for the 

philosopher of mathematics. Complexity theory began as a sort of applied mathematics, 

but now the state o f the art is mathematical through and through. Intuitions about
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machines and the solutions to specific combinatorial problems have given way to variety 

o f  inter-theoretic reductions between logic, model theory and complexity theory. What 

we really want to know is how a theory that began with a concern for concrete machines 

and real life algorithms can have so much to say about a highly abstract tradition in 

mathematical logic, and vice versa. If we could get a better grip on these mathematical 

motivations and connections, we might be able to address our concerns about 

nondeterministic algorithms.

We might never have an answer to the P=NP question, and the nondeterministic 

Turing machine might be forever lost in theoretical limbo. It might also be impossible to 

give a philosophically satisfying account o f development o f complexity theory. 

Nevertheless, it is doubly important that philosophers o f science try to make sense o f the 

role o f nondeterminism in complexity theory. Not only do we afford ourselves the 

opportunity to get in on the ground floor as a nascent science sorts out the relation 

between theory and practice, we might also find a middle ground on some long standing 

questions from the philosophy o f mathematics. There is work to be done, and it is worth 

doing.
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